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12 Theory

12-1 Pa th - i n tegra l  Theor y  fo r 
Photoemission Spectra of 
Electron-phonon Coupled 
Systems

The electron-phonon (e-ph) interaction is a basic 
problem in the solid state physics. It has been simulated 
by a large amount of researches, but still a lot of ques-
tions are unanswered. One of the most fascinating ones 
is how the e-ph interaction infl uences the electronic en-
ergy band structures, and fi nally determines a material to 
be an insulator, metal or superconductor. Since the pho-
toemission spectra (PES) and angle resolved photoemis-
sion spectra (ARPES) can directly probe the structure of 
electronic energy band with high resolution, they have 
become one of the most important measurements for the 
experimental studies [1].

In the theoretical aspect, it is now well known, these 
spectra are nothing, but the Lehmann’s representation of 
the one-body Green’s function. However, the spectra cal-
culated by the conventional theories, like the mean-fi eld 
and perturbative approximation methods, are signifi cantly 
different from the experimental ones. Recent experi-
ments of ARPES on Be(0001) surface [2] (Fig. 1) and 
Bi2Sr2CaCu2O8 [3]  show that, the spectra take sharp two-
headed asymmetric Lorentzians at the Fermi level (EF), 
and become broad Gaussians at the band bottom. This 
spectral change from two-headed asymmetric Lorentzian 
to broad Gaussian is quite unexpected and diffi cult to be 
explained by the conventional theories mentioned above, 
because the high-order e-ph scattering processes are not 
properly considered in these theories.

To clarify the mechanism of this spectral evolution, 
we develop a new path-integral theory [4] to calculate the 
ARPES. This is the fi rst work in the world that the ARPES 
from EF to band bottom are completely and exactly calcu-
lated, since in our theory, we take into account all kinds 
of e-ph scattering processes, and no other approximation 
is applied.

We start from the two-dimensional Holstein model, 
whose Hamiltonian is given as

From this Hamiltonian, we first calculate the one-body 
Green’s function of electron by the path-integral theory, 
then derive the spectral function by the analytic continua-
tion. The electronic transfer energy T and phonon energy 
ω0 are taken as 0.25 eV and 0.025 eV, respectively. In 
Fig. 2, we show the calculated ARPES at the band bot-

tom (a) and EF (b). The blue curves are obtained by our 
path-integral, and shaded ones are by the perturbation 
theory. In the perturbation theory, since the high order 
e-ph scattering processes are omitted, it gives almost 
same spectral shape in both panels. In contrast, our path-
integral has taken into account all kinds of e-ph scatter-
ing processes, so our results well reproduce the spectral 
evolution from broad Gaussian at band bottom to two-
headed asymmetric Lorentzian at EF.

From a general point of view, a hole close to EF is 
the most stable one in the band, it can stay there for a 
long lifetime, being almost free from the scatterings with 
phonons. Therefore, the photoemission spectrum near 
EF gives a Lorentzian form characterized by the coher-
ent plane-wave-like peak. While, for a hole at the band 
bottom, multiple e-ph scatterings are more likely to be 
aroused. Consequently, the hole is dressed by thick 
phonon cloud, and the spectral shape becomes a broad 
Gaussian distribution with an incoherent nature. A sta-
tistical average over these processes then gives us the 
spectral evolution of the ARPES.
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Figure 1
Experimental ARPES measured on the Be(0001) surface along the 
ΓM symmetry line of the surface Brillouin zone (after Hengsberger 
et al. [2]). It is clearly represented that the spectra evolves from 
broad Gaussian at band bottom to two headed asymmetric 
Lorentzian at Fermi level.
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Figure 2
Calculated ARPES at the band bottom (a) and Fermi level (b). Our 
path-integral theory (blue curves) well reproduces the characteristic 
spectral change, while the perturbation theory (shaded curves) 
gives almost same spectra. The inset shows the Brillouin zone and 
Fermi surface.

12-2 N ew  M a ny - b o d y  T h e o r y 
by  t h e  S u p e r p o s i t i o n  o f 
N o n - o r t h o g o n a l  S l a t e r 
Determinants 

Developing new many-body theories has been one 

⏐ ψ>= Σ
Ns

n=1
C n⏐Øn >,

Table 1 The ground state energies of the 1-D half-fi lled and doped Hubbard systems. 
The correlation energy explained by each method is denoted by κ (%)

of the central problems in both physics and chemistry. 
At present, we have the real-space density-matrix renor-
malization group method, dynamical mean-field theory, 
and quantum Monte Carlo simulation to explore the 
many-body effects. However, these methods have strong 
restrictions on their applications, such as dimensionality 
and particle fi lling. Therefore, we still need more tractable 
and applicable theories.

Here, I introduce a new variational approach to the 
accurate description of the electron correlations, called 
the resonating Hartree-Fock (Res-HF) method [1-3]. This 
method approximates a many-body wave-function by the 
superposition of non-orthogonal Slater determinants (S-
dets). The non-orthogonality enables us to describe the 
large quantum fluctuations efficiently, since each S-det 
naturally includes the full-electron-excitation effects from 
other S-dets. 

In the Res-HF method, the broken-symmetry S-dets 
are used to generate the Res-HF wave-function. As the 
resonance of different kinds of broken-symmetry S-dets 
should stabilize the many-body states, the Res-HF wave-
function ⏐ψ > is preliminarily expressed by 

where the number of S-dets is given by Ns and⏐Øn > 
represents a constituting broken-symmetry S-det. The 
orbitals of every S-det, as well as the superposition 
coefficients, are variationally determined. However, 
this is not sufficient, since each ⏐Øn > breaks sym-
metry of the system. We should make projections for 
each ⏐Øn > , so that the Res-HF wave-function belongs 
to an irreducible representation of the system. Such 
projections depend on the symmetry of the system. 

As a demonstration, I apply the Res-HF method to 
the 1-D single-band Hubbard model, where we have the 
exact Lieb-Wu solutions for both the half-fi lled and doped 
cases [4,5]. Its Hamiltonian is given by 

where N represents the system size. In the following, 

H=−tΣ(a  a   +a    a  )+UΣn n
l=1

N
+

lσ l+1σ l+1σ
+

lσ

N

l=1
l↑ l↓

N=Ne=30    κ     N=30, Ne=26   κ     N=30, Ne=22   κ

RHF        -23.2671            -26.1642             -26.8921 
Res-HF     -25.3436    98.1   -27.9979    98.5     -28.4268    98.9 
Exact     -25.3835            -28.0253          -28. 4441 

RHF        -8.2671             -14.8975   -18.8254  
Res-HF   -17.0542    97.5     -21.5720    94.1     -24.1582   95.5 
Exact       -17.2335          -21.9868             -24.4057 

RHF         21.7329             7.6358              -2.6921 
Res-HF      -9.5378    99.0      -15.4059   97.2      -19.5552  95.5 
Exact        -9.8387           -16.0761            -20.3462 

U=2 

U=4 

U=8 
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Referecnes

Figure 3
Spin correlation functions for N = Ne = 30 (a), N = 30 and Ne= 26 (b), 
and N = 30 and Ne = 22 (c). The close-up of the long-range behavior 
is shown in the inset of each figure, where the crosses show the 
exact long-range behavior

ψ>= Σ Cf Σ P  T (1+R)⏐Øn⏐
NS

n=1

N−1

m=0

s m >,

In this study, a periodic boundary condition is imposed. 
Therefore, the system has the DN symmetry. Here, I fo-
cus on the ground state with N=30 sites which satisfi es 
the 1A1 symmetry. In this case the Res-HF wave-function 
is explicitly represented by 

where the operator T makes the translation of the S-det 
by one site, while R represents the C2 rotation in the DN 

(a)

(b)

(c)
0.5

symmetry group. PS represents the spin projection of the 
constituting S-dets onto the exact singlet eignen-states. 

In Table 1, I show the ground state energies of the 
half-filled and doped Hubbard systems. Here, RHF 
denotes the restricted HF state, which satisfies the full 
symmetries of the system. Ne represents the number of 
electrons. It is remarkable that for both the half-fi lled and 
doped systems, the Res-HF wave-functions can describe 
more than 94% of the correlation energies in all the cor-
relation regimes. 

Next, I show in Fig. 3 the spin correlation functions 
obtained by the Res-HF wave-functions for U = 4. The 
long-range behaviors are enlarged in the inset, where 
the crosses show the exact behaviors. We can see that 
the Res-HF wave-functions describe the exact spin cor-
relation structures very nicely for both the half-fi lled and 
doped systems.

Thus, I have shown that both the correlation energies 
and correlation structures are well described by the Res-
HF wave-functions. Since the Res-HF method does not 
suffer any problems from the dimensionality and filling, 
it can be a powerful tool for the studies of the interacting 
Fermion systems.

all the energies are normalized by the transfer energy t.




