XAFS analysis on the interaction between RuO₂/CeO₂ and C₃H₆

Saburo HOSOKAWA, Toshiya NISHIGUCHI, Hiroyoshi KANAI, Seiichiro IMAMURA* Department of Chemistry, Kyoto Institute of Technology, Kyoto 606-8585, Japan

INTRODUCTION

 CeO_2 is an evitable component in the automobile catalyst; it keeps high surface area, prevents sintering of noble metals, and thus, stabilizes their dispersed state. We found that the amount of C_3H_6 adsorbed on RuO_2/CeO_2 was peculiarly larger than those on Pt-, Pd-, and Rh/CeO₂. The interaction between RuO_2/CeO_2 and C_3H_6 was investigated by XAFS analysis.

EXPERIMENTAL

 $Ce(OH)_3$ was precipitated from aqueous $Ce(NO_3)_3$ with NaOH at pH of about 11. The precipitate while it was wet, was dispersed in deionized water. A known amount of RuCl₂ was added followed by introducing HCHO under stirring at 90 °C for 1 h. Then 3 N-NaOH was added to the mixture until the pH of the solution was about 11. The solid portion was filtered and washed with deionized water followed by drying at 80 °C overnight and calcination at 500 °C for 3 h in air. XAFS measurements were carried out using a reaction cell. RuO₂/CeO₂ was pretreated with O₂ at 200 °C for 1 h, was cooled to room temperature and the spectra were recorded. Then, the cell was evacuated to remove O2, C3H6 was introduced on the catalyst for 15 min at room temperature and the spectra were also recorded.

RESULTS AND DISCUSSION

The Ru K-edge XANES spectra are shown in Fig. 1. The pre-edge peak was not detected in RuO₂ but it was observed at 22115 eV for the RuO₂/CeO₂ pretreated with O₂. The pre-edge peak is caused by the tradition from 1d to 4d level of metal ions. Although this transition is formally forbidden, asymmetric configurations of metal ions allow it. As RuO₂ has a good symmetry with six coordinated structure, the pre-edge peak is not detected. However, as the pre-edge peak was detected in the O₂treated RuO₂/CeO₂, we deduced that the state of the Ru species was more asymmetric than RuO₂ and was in a five-coordinated structure. When C₃H₆ was introduced to the RuO₂/CeO₂, the pre-edge peak was disappeared. Therefore, the Ru species with the five coordinated structure on CeO_2 reacted with C_3H_6 and Ru seemed to change to six coordinated structure.

The FT peak intensity of RuO₂/CeO₂ pretreated with O₂was lower than that of RuO₂ and the peak pattern of RuO₂/CeO₂ was different from RuO₂ in the region of 3.0 Å(Fig. 2). Therefore, we considered that two Ru species were dispersed on CeO₂: the most of Ru species formed RuO₂ and a part of Ru species highly dispersed on CeO₂ formed Ru-O-Ce bonds. The FT's of RuO₂/CeO₂ after introduction of C₃H₆ is similar to RuO₂. Therefore, the oxygen atoms of Ru-O-Ce bonds were reacted with C₃H₆ but Ru-O-Ru in RuO₂ was not reacted and remained. From this results, we consider that RuO₂/CeO₂ pretreated with O₂ have highly dispersed Ru species on CeO₂, which forms Ru-O-Ce. This is in the five coordinated structure and reacts with C₃H₆.

Fig. 1 Normalized XANES spectra of Ru (K-edge).

Fig. 2 EXAFS-FT of Ru supported on CeO₂.

imamura@kit.ac.jp