Effects of interlayer and annealing on chemical states of HfO₂ gate insulators studied by photoemission spectroscopy

Satoshi TOYODA¹, Jun OKABAYASHI¹, Hiroshi KUMIGASHIRA¹, Masaharu OSHIMA¹, Kanta ONO², Masaaki NIWA³, Koji USUDA³ and Guo-Lin LIU³ ¹The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan ²KEK-PF, Tsukuba, Ibaraki 305-0801, Japan ³STARC, Kohoku-ku, Kanagawa 222-0033, Japan

Introduction

High-dielectric constant (high-k) materials such as Ta₂O₅, SrTiO₃, ZrO₂ and HfO₂ have been extensively investigated as alternatives to SiO₂ in the downscaling of complementary metal-oxide-semiconductor (CMOS) field effect transistor dimensions resulting in increasing levels of leakage current. Especially, HfO₂ has a high potential for the next-generation device applications using merits as a considerably large energy-band gap, high dielectric constant and compatibility with conventional CMOS processes because of the thermal stability. However, there are several problems to be solved such as the Hf-silicate layer formation at the interface between the HfO₂ layer and the Si substrate, the formation of metallic Hf-silicide, and the crystallization in the HfO₂ layer after annealing for activation. To fabricate high-quality gate insulators where interlayer formation is well controlled, we have to investigate the change of chemical states due to the subsequent annealing systematically.

Experimental

We have performed photoemission spectroscopy of high-*k* gate insulators $HfO_2/HfSiON/Si$ during ultra high vacuum (UHV) annealing process to investigate the Hf-silicide formation, which may cause the gate leak in C-MOS devices. The Hf-metal layer and the HfO_2 layer were deposited by DC sputtering using a Hf-metal target on the Si substrate at room temperature. We measured two films without (sample A: HfO_2 layer 1.6 nm, interlayer 2.8 nm) and with (sample B: HfO_2 layer 3.9 nm, interlayer 1.7 nm) the Hf-metal predeposition [1].

Results and Discussion

Figure 1 shows Hf 4*f* core-level spectra of as-grown and subsequently annealed samples at 800 °C, 900 °C, and 1000 °C. Spectra were normalized at the peak height of Hf 4*f*_{7/2}. Binding energies of Hf 4*f*_{7/2} were different between Sample A (17.4 eV) and Sample B (18.3 eV) due to the difference of the chemical environment. There are several reports on Hf 4*f* photoemission spectra which are deconvoluted into one or two components including the interlayer concerning the dip structures between the spinorbit splitting of Hf 4*f*_{7/2} and 4*f*_{5/2} [2,3]. In this experiment, we conclude that Sample A contains mainly the Hfsilicate component and Sample B consists of HfO₂ with little Hf-silicate component. In the case of annealing at 900 °C, a small peak for the metallic Hf and/or Hf-silicide component appeared in Sample A by 100 times expanding although such a structure never appeared in Sample B. This indicates that the Hf-metal predeposition can restrict the formation of the Hf-silicide and the segregation of the Hf metal at the interface even after 900 °C annealing, probably playing a significant role of suppressing the gate leakage currents. After the annealing at 1000 °C in UHV, Hf 4f_{7/2} peaks were located at 14.6 eV of binding energies for both films, which suggests that the Hf-O bonding is broken. The Hf-Si and Hf-Hf bondings appear, suggesting the formation of metallic Hf-silicide and Hf-cluster. In the spectra of the annealed sample at 1000 °C, there are satellite structures at the higher binding energy side although the peak height is different. Asymmetric line shapes also reveal the metallic feature. Considering the spectra of 900 °C and 1000 °C annealing, we conclude that the main peak and the satellite structure are assigned as metallic Hf and Hf-silicide components, respectively [4]. Angular dependence in the spectra reveals that Hf-silicide is located in the more surface region after the annealing at 1000 °C.

- [1] K. Yamamoto et al., Jpn. J. Appl. Phys. 42, 1835 (2002).
- [2] O. Renault et al., Appl. Phys. Lett. 81, 3627 (2002).
- [3] M. Oshima et al., Appl. Phys. Lett. 83, 2172 (2003).
- [4] S. Toyoda et al., Appl. Phys. Lett 84, 2328 (2004).

FIG. 1: Hf 4*f* core-level photoemission spectra in HfO_2 without (a) and with (b) the Hf-metal predeposition with angular dependence of 0° (solid curves) and 60° (dashed curves). Each panel shows the annealing-temperature dependence (as-grown, 800 °C, 900 °C, and 1000 °C).

¹toyoda@sr.t.u-tokyo.ac.jp