# *In-situ* angle-resolved photoemission study on La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> thin films grown by laser MBE

Akira CHIKAMATSU<sup>1\*</sup>, Hiroki WADATI<sup>2</sup>, Ryuji HASHIMOTO<sup>1</sup>, Masaru TAKIZAWA<sup>2</sup>, Hiroshi KUMIGASHIRA<sup>1</sup>, Masaharu OSHIMA<sup>1</sup>, Atsushi FUJIMORI<sup>2</sup>, Tsuyoshi OHNISHI<sup>3</sup>, Mikk LIPPMAA<sup>3</sup>, Kanta ONO<sup>4</sup>, Masashi KAWASAKI<sup>5</sup>, and Hideomi KOINUMA<sup>6</sup> <sup>1</sup>Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8656, Japan <sup>2</sup>Department of Complexity Science and Engineering, The University of Tokyo, Kashiwa 277-8561, Japan

<sup>3</sup>Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan
<sup>4</sup>Institute of Materials Structure Science, KEK-PF, 1-1 Oho, Tsukuba 305-0801, Japan
<sup>5</sup>Institute for Materials Research, Tohoku University, Sendai 980-812, Japan
<sup>6</sup>Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

## **Introduction**

perovskite Hole-doped manganese oxides La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> (LSMO) have attracted much attention because of their interesting magnetic and electronic properties such as colossal magnetoresistance and metal-insulator transition.<sup>1</sup> In order to clarify the origin of their physical properties, it is necessary to investigate the band structures near the Fermi level  $(E_{\rm F})$  of manganites and their changes induced by In this study, we have performed hole-doping. in-situ angle-resolved photoemission (in-situ ARPES) study on well-ordered surfaces of LSMO (x = 0.1, 0.2, 0.3, and 0.4) thin films grown epitaxially on SrTiO<sub>3</sub>(001) substrates by laser molecular beam epitaxy (laser MBE).

#### **Experimental**

The LSMO thin films were fabricated in a laser MBE chamber connected to a synchrotron radiation photoemission system at BL-1C of the Photon Factrory.<sup>2</sup> LSMO thin films were deposited on the TiO<sub>2</sub>-terminated SrTiO<sub>3</sub> (001) substrates at 1050  $^{\circ}$ C at the oxygen pressure of 1 x 10<sup>-4</sup> Torr.<sup>3</sup> After cooling down below 100  $^{\circ}$ C, the films were transferred into the photoemission chamber under the vacuum of 10<sup>-10</sup> Torr. The PES spectra were taken with total energy resolution of about 150 meV at the photon energy of 88 eV.

### **Results and Discussion**

Figure 1 shows the band structure of LSMO x = 0.4 along the  $\Gamma$ -X direction determined by the *in-situ* ARPES spectra (hv = 88 eV). We clearly found an electron pocket centered at the  $\Gamma$  point near  $E_{\rm F}$ . In comparison with the Mn 2*p*-3*d* resonant PES results, the observed electron pocket originates from a Mn  $3de_g$  orbital. On the other hand, the dispersionless band located at the binding energy of about 2.0 eV is

assigned to Mn  $3dt_{2g}$  states, while several highly dispersive bands in the region of 2.3 – 6.0 eV is derived from O 2*p* dominant states. The observed electron pocket in LSMO x = 0.4 gradually disappears with decreasing hole concentration. This behavior may reflect the phase transition from ferromagnetic metal to antiferromagnetic insulator (Mott insulator).



Figure 1: The band structure of LSMO x = 0.4along the  $\Gamma$ -X direction determined by *in-situ* ARPES spectra (hv = 88 eV). Dark parts correspond to the energy bands.

#### References

- [1] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. **70** 1039 (1998) and references therein.
- [2] K. Horiba et al., Rev. Mod. Instr, 74, 3406 (2003).
- [3] M. Kawasaki et al., Science 266, 1540 (1994).
- \*chikamatsu@sr.t.u-tokyo.ac.jp