Spectral evidence for inherent "dead layer " formation at La_{1-v}Sr_vFeO₃/La_{1-x}Sr_xMnO₃ heterointerface

Ryuji HASHIMOTO¹, Akira CHIKAMATSU¹, Hiroshi KUMIGASHIRA^{1*}, Masaharu OSHIMA¹, Naoyuki NAKAGAWA², Tsuyoshi OHNISHI², Mikk LIPPMAA², Hiroki WADATI³, Atsushi FUJIMORI³, Kanta ONO⁴, Masashi KAWASAKI⁵, and Hideomi KOINUMA⁶

¹Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8656, Japan

²Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan

³Department of Complexity Science and Engineering, The University of Tokyo, Kashiwa 277-8561, Japan

⁴Institute of Materials Structure Science, KEK-PF, 1-1 Oho, Tsukuba 305-0801, Japan

⁵Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

⁶Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Introduction

Superlattices based on perovskite transition-metal oxides have attracted much attention because of the possibility of tuning the magnetic and electronic properties of a thin film in ways that would not be possible in single-phase bulk materials.¹ However, the lack of information on the electronic structure of the interfacial layers, especially the occurrence of charge transfer between constituent layers, does not allow us to fabricate superlattices with predetermined properties. In this study, we report *in situ* Mn 2*p*-3*d* resonant photoemission (PES) characterization of La_{0.6}Sr_{0.4}MnO₃ (LSMO) layers that have been covered with a thin La_{0.6}Sr_{0.4}FeO₃ (LSFO) overlayer to investigate the occurrence of charge transfer between transition metals across the heterointerface.

Experimental

The LSFO/LSMO superlattices as well as LSMO thin films were fabricated onto TiO₂-terminated SrTiO₃ (STO) substrates in a laser MBE chamber connected to a synchrotron radiation PES system at BL2C of the Photon Factory.² During deposition, the substrate temperature was kept at 950 °C and the oxygen pressure was 1×10^{-4} Torr.¹ The side view of the fabricated film libraries are shown in the inset of Fig. 1. After cooling down below 100 °C, the samples were transferred into the PES chamber under the vacuum of 10^{-10} Torr. The PES spectra were taken with a total energy resolution of 150 meV in the photon energy range of 600-700 eV. The chemically abrupt interface between LSFO and LSMO was confirmed by analyzing the intensity of Mn 2p core level.³

Results and Discussion

Figure 1 shows the Mn 3*d* spectra near the Fermi level (E_F) of LSMO layers in the vicinity of an interface with the LSFO overlayers. Spectra of La_{1-x}Sr_xMnO₃ (x = 0.4 and 0.55) films are also shown as a reference. The spectra were obtained by subtracting the off-resonance spectra (no Mn 3*d* contribution) from the on-resonance spectra. The Mn 3*d* spectra consist of two prominent peaks at about 2.1 and 0.8 eV. These peaks are assigned to Mn 3*d* $t_{2g\uparrow}$ and $e_{g\uparrow}$ states, respectively. Figure 1 shows

an interesting change in spectral intensity near E_{F} , reflecting the modulated electronic structure at the interface; the intensity of the $e_{g\uparrow}$ states drops dramatically as the LSFO overlayer thickness increases, while the $t_{2e\uparrow}$ states show no noticeable change. The observed changes in the valence band spectra are very similar to the relative changes in the peak intensities of the valence band photoemission spectra that have been observed in La₁₋ _xSr_xMnO₃ as a function of carrier concentration, where the intensity of the $e_{e\uparrow}$ states monotonically decreases with increasing hole concentration (x).⁴ The spectra obtained from 20 ML-thick x = 0.4 and x = 0.55 LSMO films, also shown in Fig. 1, demonstrate this behavior. The reduction of spectral intensity of $e_{g\uparrow}$ states with increasing LSFO overlayer thickness therefore clearly indicates the occurrence of electron transfer from LSMO to LSFO layers in the interface region.

References

[1]M. Izumi *et al.*, Phys. Rev. B **60**, 1211(1999).
[2]H.Kumigashira *et al.*, Appl. Phys. Lett. **82**, 3430(2003).
[3]H.Kumigashira *et al.*, Appl. Phys. Lett. **84**, 5353(2004).
[4]T. Saitoh *et al.*, Phys. Rev. B **51**, 13942(1995).

* kumigashira@sr.t.u-tokyo.ac.jp