Quantitative Analysis of Lattice Distortion due to Surface Treatment of Bias Sputtering by Extremely Asymmetric X-Ray Diffraction

Yasunori YOSHIDA, Koichi AKIMOTO*, Takashi EMOTO, Satoshi KIKUCHI, Kazuo ITAGAKI, and Hideo NAMITA

1Dept. of Quantum Engineering, Nagoya University, Chikusa-ku, Furo-cho, Nagoya 464-8603, Japan.
2Toyota National College of Technology, 2-1, Eisei-cho, Toyota, Aichi 471-8525, Japan.
3Optoelectronics Laboratory, Optoelectronics Department, Information and Electronics Division, Mitsubishi Chemical Corp., 1000 Higashimamiana, Ushiku, Ibaraki 300-1295, Japan.
4Mitsubishi Chemical Group, Science and Technology Research center, Inc., 8-3-1, Chuo, Ami-machi, Ibaraki 300-0332, Japan

Introduction
Strain fields near InGaP or GaAs surfaces due to bias sputtering (Ar plasma-ion irradiation) for surface cleaning were measured by using a strain-sensitive X-ray diffraction technique. An extremely asymmetric InGaP or GaAs 113 reflection of the sample was measured to observe strain fields.

Results and Discussion
We found that strain fields near InGaP or GaAs surfaces due to bias sputtering are affected by the bias voltage (Ar plasma-ion irradiation energy) used in this surface-cleaning treatment. By comparing measured 113 rocking curves and calculated ones based on the dynamical rocking curves and calculated ones based on the theory of X-rays, we estimated the thickness of a strained layer and a maximum strain at the surface, as shown in Fig. 1. In order to narrow the reliable region, X-ray wavelength dependencies of the integrated intensities have been measured as shown in Fig. 2. Resulting estimated parameters clearly show the bias sputtering to have two effects. One should be the surface cleaning process of removing oxides on surfaces. The other is the lattice expansion, which is caused by compositional fluctuation near the surface or peening process of Ar ion.

Fig. 1 Obtained Reliable regions of maximum strain (ε_0) and the thickness of the distorted layer (H)

Fig. 2 Dependence of Integrated intensities for the measured rocking curves on X-ray wavelength

* akimoto@cc.nagoya-u.ac.jp