Investigation of coexistent phase of AFQ and AFM orders in $\mathbf{T b B}_{\mathbf{2}} \mathbf{C}_{\mathbf{2}}$ by resonant x-ray scattering in magnetic fields

Daisuke OKUYAMA* ${ }^{1}$, Takeshi MATSUMURA ${ }^{1}$, Hironori NAKAO ${ }^{1}$, Youichi MURAKAMI ${ }^{1}$
Yusuke WAKABAYASHI ${ }^{2}$, Hiroshi SAWA ${ }^{2}$, Aya TOBO ${ }^{1}$, Hideya ONODERA ${ }^{1}$
${ }^{1}$ Department of Physics, Tohoku University, Sendai 980-8578, Japan
${ }^{2}$ KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction

$\mathrm{RB}_{2} \mathrm{C}_{2}(\mathrm{R}=\mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho})$ has antiferroquadrupole (AFQ) phase transitions at high temperatures. Among these three, $\mathrm{TbB}_{2} \mathrm{C}_{2}$ has been expected to exhibit magnetic field induced AFQ order, while the ground state in zero field is an antiferromagnetic (AFM) phase[1]. This AFM phase, called phase IV with $T_{\mathrm{N}}=21.7 \mathrm{~K}$, is described by the propagation vectors of $\boldsymbol{k}_{2}=\left(\begin{array}{lll}1 & 0 & 1 / 2\end{array}\right), \boldsymbol{k}_{4}=\left(\begin{array}{lll}0 & 0 & 1 / 2\end{array}\right)$, and $\boldsymbol{k}_{\mathrm{L}}=(1 \pm \delta 0 \pm \delta 0) . \boldsymbol{k}_{2}$ has a large moment along [1-1 0], and $\mathrm{TbB}_{2} \mathrm{C}_{2}$ has a simple magnetic structure with its moments directed along the $\langle 1-10\rangle$ directions. In spite of this simple magnetic structure in phase IV, we observed a periodic alignment of aspherical charge distributions of $4 f$ electoron of Tb by resonant x-ray scattering in a previous experiment. We consider the mechanism of this strange quadrupole order as follows: First, the composite magnetic moment in phase IV is canted within the c plane because the propagation vector \boldsymbol{k}_{4} has a small moment along $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$ that is perpendicular to the moment of \boldsymbol{k}_{2}. Second, the charge distribution of the $4 f$ electrons becomes aspherical in a sufficiency low temperature where no orbital degree of freedom remains. These effects make the principal axis of the aspherical charge distribution coincident with the direction of the magnetic moment by the strong spin-orbit interaction.

In the present experiment, we examined the coexistent phase of AFQ and AFM orders, called phase III, in a magnetic field above $H_{Q} \approx 5000$ Oe. This magnetic structure is described by the propagation vector of $\boldsymbol{k}_{1}=(10$ $0)$, $\boldsymbol{k}_{2}=(101 / 2), \boldsymbol{k}_{3}=\left(\begin{array}{ll}0 & 0\end{array}\right)$, and $\boldsymbol{k}_{4}=(001 / 2)$, like phase III of $\mathrm{DyB}_{2} \mathrm{C}_{2}[2]$. We checked the existence of the AFQ order in this phase and compared the observed propagation vectors and the scattering intensities in phase III with those in phase IV.

Experimental Results

Figure 1 shows the energy dependences of the observed reflections at $T=8 \mathrm{~K}$ and $H=12000$ Oe in phase III. Reflections with propagation vectors of $\boldsymbol{k}_{1}, \boldsymbol{k}_{2}$, and \boldsymbol{k}_{4} for $\sigma-\sigma$ ' and $\sigma-\pi$ ' channels were found. The spectrum for the $\sigma-\sigma$ ' channel of \boldsymbol{k}_{1} exhibits a resonant enhancement at the $L_{\text {III }}$ absorption edge of Tb at $E=7.5165 \mathrm{keV}$. In $\sigma-\pi$ ' channel of \boldsymbol{k}_{1} both E1 and E2 resonances are observed. The spectrum for $\sigma-\sigma$ ' of \boldsymbol{k}_{2} exhibits a nonresonant Thomson scattering from lattice distortion. $\sigma-\pi$ ' channel of \boldsymbol{k}_{2} has strong resonances of E1 and E2 processes. The reflection for $\sigma-\sigma$ ' channel of \boldsymbol{k}_{4} also has resonances of

E1 and E2 processes. The reflection for the $\sigma-\pi$ ' channel of \boldsymbol{k}_{4} has weak resonances of E1 and E2. Since these features are very similar with those of $\mathrm{DyB}_{2} \mathrm{C}_{2}$, we conclude that the quadrupole order of $\mathrm{TbB}_{2} \mathrm{C}_{2}$ in phase III is very similar to that of $\mathrm{DyB}_{2} \mathrm{C}_{2}[3]$.

Fig. 1 Energy dependences of all the observed reflections at $H=12000$ Oe.

References

[1] K. Kaneko et al., Phys. Rev. B 68, 012401 (2003).
[2] H. Yamauchi et al., J. Phys. Soc. Jpn. 68, 2057 (1999).
[3] T. Matsumura et al., Phys. Rev. B 65, 094420 (2002).

* oku@iiyo.phys.tohoku.ac.jp

