Photoemission study of the diluted magnetic semiconductor Zn_{1-x}Co_xO

M. Kobayashi¹, Y. Ishida¹, J. I. Hwang¹, T. Mizokawa¹, A. Fujimori¹, K. Mamiya²,

H. Saeki³, H. Tabata³, T. Kawai³

¹Department of Physics and Complexity Science and Engineering, Univ. of Tokyo, Kashiwa, Chiba

277-8561, Japan

²Syncrotron Radiation Research Center, JAERI, SPring-8, Mikazuki, Hyogo 679-5148, Japan

³Institute of Science and Industrial Research, Osaka Univ., Ibaraki, Osaka 567-0047, Japan

Introduction

Diluted magnetic semiconductors (DMSs) are key materials in spintronics (spin plus electronics), which is intend to manipulate both the spin and charge degrees of freedom. ZnO-based DMS have been predicted to be a candidate for a room temperature ferromagnet by theoretical studies [1]. In n-type Co-doped ZnO thin films, Ueda et al. succeeded to observe room temperature ferromagnetism [2]. In DMS, Photoemission spectroscopy (PES) and configuration-interaction (CI) analysis using the cluster model are powerful tools to investigate the electronic structure of the substituted transition metal ion [3].

<u>Experimental</u>

A Zn_{1-x}Co_xO (x=0.05) thin film was prepared on a Al2O3 (0001) substrate by the pulsed laser deposition technique using an ArF excimer laser at the substrate temperature of ~300°C in an ambient oxygen pressure of $1.0x10^{-5}$ mbar. The total thckness of the Zn_{1-x}Co_xO layer was ~200nm on a 50nm ZnO buffer layer.

Ultraviolet photoemission (UPS) measurements were performed at BL-18A of Photon Factory. Spectra were taken in an ultrahigh vacuum below 7.5×10^{-10} Torr. Photoelectrons were collected in the angle integrated mode at room temperature. The total resolution of the spectrometer with a VG CLAM hemispherical analyzer including temperature broadening was about 200 meV. Sample surface was cleaned by Ar⁺-ion sputtering at 1.5 kV and annealing at 250°C. Cleanliness was checked by low energy electron diffraction (LEED) and the absence of a high binding-energy (E_B) shoulder in the O 1s spectrum and of C 1s contamination by x-ray photoemission spectroscopy (XPS).

Results

Absorption spectrum measured in the total yield mode shows that Co 3p -> 3d absorption occurs at hv ~61 eV. Figure 1 (a) shows the Co 3d partial density of states (PDOS) of $Zn_{0.95}Co_{0.05}O$, which has obtained by subtracting the off-resonance spectrum (hv =60.0 eV) from the on-resonance one (hv =61.5 eV) that have been normalized to the integrated valence band (VB) intensity of ZnO (integration range: $0 < E_B < 9 eV$). The Co 3d PDOS shows a peak at $E_B \sim 3.0 eV$, and a satellite at $E_B \sim 7.0 eV$.

By applying the CI cluster-model analysis to the Co 3d PDOS in the VB, electronic structure parameters are obtained as the ligand to 3d charge transfer energy

 Δ =5.0±0.5 eV, the d-d Coulomb interaction energy U=6.0±0.5 eV and the Slater-Koster parameter (pd\sigma)=-1.6±0.1 eV (a transfer integral between O 2p and Co 3d). These parameters are consistent with the chemical trend in II-VI DMSs [4]. Figure 1(b) shows that the main structure of the spectrum dominantly consists of the charge-transferred electronic states, i.e. d⁷L, where L denotes a ligand 2p hole. These results mean that it is important to consider the strong correlation effects for the electronic structure of Co.

Fig. 1. (a) On-resonance (hv = 61.5 eV) and offresonance (hv = 60.0 eV) spectra normalized to the integrated valence band intensity of the ZnO. Difference between these spectra represents the Co 3d PDOS. (b) CI cluster model analysis for the Co 3d PDOS.

References

[1] K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 40, 790 (2001).

[2] K. Ueda, H. Tabata and T. Kawai, Appl. Phys. Lett. 79, 988 (2001)

[3] T. Mizokawa, T. Nambu, A. Fujimori, T. Fukumura and M. Kawasaki, Phys. Rev. B 65, 085209 (2002)

[4] T. Mizokawa and A. Fujimori, Phys. Rev. B 56, 6669 (2002)

*masaki@wyvern.phys.s.u-tokyo.ac.jp