Spin Moment and Spin-polarized Electron Momentum Density in Ferromagnetic Superconductor UGe₂

Yoshiharu SAKURAI^{*1}, Masayoshi ITOU¹, Hiroshi SAKURAI², Hiromichi ADACHI³, Hiroshi KAWATA³, Etsuji YAMAMOTO⁴, Yoshinori HAGA⁴, and Yoshichika ONUKI^{4,5}

¹JASRI/SPring-8, 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5198, Japan
²KEK-PF, Tsukuba, Ibaraki 305-0801, Japan
³Department of Electronic Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan
⁴ASRC/JAERI, Tokai, Ibaraki 319-1195, Japan
⁵Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Introduction

The coexistence of superconductivity with magnetism has recently renewed an interest in condensed matter physics. UGe₂ has a collinear magnetic structure with the ferromagnetically ordered moment of 1.4 μ_B . The Curie temperature Tc = 52 K at ambient pressure decrease under pressure, vanishing at 1.6 GPa. Around 1.2 GPa, UGe₂ becomes superconducting while remaining strongly ferromagnetic with a moment of 1 μ_B /U, providing an attractive case of coexistence of the superconductivity with strong ferromagnetism.

The magnetic structure of UGe_2 is a rather open question. The aim of this experiment is to obtain a microscopic picture of magnetism in ferromagnetic UGe_2 that is conceivably the ground for developing a theory on the novel superconductivity.

Experimental Details

The spin-polarized electron momentum density distribution, so-called magnetic Compton profile (MCP), was measured by the magnetic Compton scattering (MCS) technique, and the spin moment of UGe₂ was determined from the magnetic effect on MCS. The measurement was carried out at 20 K with a magnetic field of 0.5 T. The incident x-ray energy was 113 keV. A iron sample was also measured at room temperature to calibrate the spectrometer for obtaining an absolute value of the spin moment. The experiment was performed at the AR-NE1A1 beamline

Results and Discussion

The magnetic effect was -0.89 ± 0.08 % along the easy axis (a-axis). This gives the spin moment of -1.03 ± 0.09 μ_B at 20 K. The negative value indicates that the orbital moment dominates the magnetization. The total magnetic moment (spin moment + orbital moment) was measured by a SQUID and was +1.38 μ_B at 20K under 0.5 T. From the results, we determined the orbital moments at

2.41 \pm 0.09 μ_B . The ratio of orbital to spin moments (L/S) is 2.33. Figure 1 shows the magnetic Compton profile at T=20K.

We are now analyzing the shape of the profile for clarifying the magnetic structure in ferromagnetic UGe_2 .

Figure 1 : Magnetic Compton profile of UGe₂ along the a-xis at 20 K.

* sakurai@spring8.or.jp