Structural changes of the high temperature proton conductor SrZr$_{1-x}$Yb$_x$O$_{3-\delta}$

Kenjiro OH-UCHI1, Masatomo YASHIMA*1, Daiju ISHIMURA1, Syuuhei KOBAYASHI1, Wataru NAKAMURA1, Akira YOSHIA2, Maki OKUBE3, Masahiko TANAKA4, Takeharu MORI4

1Department of Materials Science and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan
2Department of Earth Sciences, Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
3Institute for Study of the Earth’s Interior, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan
4Photon Factory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Introduction

Perovskite-type strontium zirconate SrZrO$_3$ exhibits appreciable proton conduction in hydrogen-containing atmosphere at high temperature when a few mol\% of trivalent cations such as Yb$^{3+}$, Y$^{3+}$, Ga$^{3+}$ and In$^{3+}$ are substituted for Zr$^{4+}$ ions. The chemical stability of SrZrO$_3$-based oxide is much better, and Yb-doped SrZrO$_3$ oxide shows the highest proton conductivity. The proton conductivity depends on the amount of dopant Yb ions and shows the maximum value when substituted for Yb ions by 10 mol\% [1, 2].

In order to understand the electrical properties of these materials, it is necessary to study the precise crystal structure of SrZrO$_3$ and doped SrZrO$_3$. In our previous study, it was found that SrZrO$_3$ undergoes a sequence of phase transitions as follows, $Pnma \rightarrow Imma \rightarrow I4/mcm \rightarrow Pm-3m$, at 790, 875 and 1120°C, respectively. Here we have used synchrotron X-ray diffraction technique, having higher angular resolution, to investigate the structural change and the phase transition temperature of SrZr$_{1-x}$Yb$_x$O$_{3-\delta}$ ($x = 0.05$ and 0.1).

Experiments

The powder samples of 5 and 10 mol\% Yb-doped SrZrO$_3$ were synthesized by solid-state reaction. To obtain higher angular resolution as possible with good counting statistics, we performed synchrotron X-ray powder diffraction experiments from 25°C to 1084°C for Yb-doped SrZrO$_3$ at the beam line BL-3A at the Photon Factory, High Energy Accelerator Research Organization (KEK), Japan. A monochromatized 0.99930Å X-ray was used for high-temperature diffraction measurements. To improve the angular resolution a Si (111) analyzer crystal was installed between the sample and the scintillation counter. The temperature was kept constant within ± 0.5°C during each data collection.

Results and discussion

Figure 1 shows the synchrotron X-ray diffraction patterns of 10 mol\% Yb-doped SrZrO$_3$ in the 2θ range of 27.8° to 28.0°. Figure 2 shows the transition temperatures against x in SrZr$_{1-x}$Yb$_x$O$_{3-\delta}$. The transition temperatures of the Yb-doped SrZrO$_3$ decrease with increasing amount of dopant Yb ions in spite of substitution of Zr$^{4+}$ ions by Yb$^{3+}$ ions with a large ionic radius. This suggests that there exist much oxide ion vacancies introduced by substitution of tetravalent zirconium ions by trivalent ytterbium ions.

References

* yashima@materia.titech.ac.jp