Structural changes of the high temperature proton conductor $SrZr_{1-x}Yb_xO_{3-\delta}$

Kenjiro OH-UCHI¹, Masatomo YASHIMA*¹, Daiju ISHIMURA¹, Syuuhei KOBAYASHI¹, Wataru NAKAMURA¹, Akira YOSHIASA², Maki OKUBE³, Masahiko TANAKA⁴, Takeharu MORI⁴ ¹Department of Materials Science and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan ²Department of Earth Sciences, Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan

³Institute for Study of the Earth's Interior, Okayama University, Yamada 827, Misasa, Tottori 682-0193, Japan ⁴Photon Factory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Introduction

Perovskite-type strontium zirconate $SrZrO_3$ exhibits appreciable proton conduction in hydrogen-containing atmosphere at high temperature when a few mol% of trivalent cations such as Yb³⁺, Y³⁺, Ga³⁺ and In³⁺ are substituted for Zr⁴⁺ ions. The chemical stability of SrZrO₃-based oxide is much better, and Yb-doped SrZrO₃ oxide shows the highest proton conductivity. The proton conductivity depends on the amount of dopant Yb ions and shows the maximum value when substituted for Yb ions by 10 mol% [1, 2].

In order to understand the electrical properties of these materials, it is necessary to study the precise crystal structure of SrZrO₃ and doped SrZrO₃. In our previous study, it was found that SrZrO₃ undergoes a sequence of phase transitions as follows, *Pnma* \rightarrow *Imma* \rightarrow *I4/mcm* \rightarrow *Pm*-3*m*, at 790, 875 and 1120°C, respectively. Here we have used synchrotron X-ray diffraction technique, having higher angular resolution, to investigate the structural change and the phase transition temperature of SrZr_{1-x}Yb_xO_{3- δ} (*x* = 0.05 and 0.1).

Experiments

The powder samples of 5 and 10 mol% Yb-doped SrZrO₃ were synthesized by solid-state reaction. To obtain higher angular resolution as possible with good counting statistics, we performed synchrotron X-ray powder diffraction experiments from 25°C to 1084°C for Yb-doped SrZrO₃ at the beam line BL-3A at the Photon Factory, High Energy Accelerator Research Organization (KEK), Japan. A monochromatized 0.99930Å X-ray was used for high-temperature diffraction measurements. To improve the angular resolution a Si (111) analyzer crystal was installed between the sample and the scintillation counter. The temperature was kept constant within \pm 0.5°C during each data collection.

Results and discussion

Figure 1 shows the synchrotron X-ray diffraction patterns of 10 mol% Yb-doped SrZrO₃ in in the 2θ range from 27.8° to 28.0°. At 666, 688 and 710°C, we observed Bragg reflections from two phases, *Imma* and *I4/mcm*, indicating that the phase transition is discontinuous and of

first order. The result of this study made clear that the $SrZr_{1-x}Yb_xO_{3-\delta}$ (x = 0.05, 0.1) undergoes a sequence of same phase transitions as $SrZrO_3$ does.

Figure 2 shows the transition temperatures against *x* in $SrZr_{1-x}Yb_xO_{3-\delta}$. The transition temperatures of the Yb-doped $SrZrO_3$ decrease with increasing amount of dopant Yb ions in spite of substitution of Zr^{4+} ions by Yb³⁺ ions with a large ionic radius. This suggests that there exist much oxide ion vacancies introduced by substitution of tetravalent zirconium ions by trivalent ytterbium ions.

Fig. 1. Synchrotron X-ray diffraction patterns of 10 mol% Vb-doped SrZrO₃ in the 2θ range of 27.8° to 28.0°.

Fig. 2. Transition temperatures for $\text{SrZr}_{1-x}\text{Yb}_x\text{O}_{3-\delta}$ against Yb concentration *x*.

References

- [1] T. Osaka et al., Materials Research Bulletin, 34, 11-24 (1999).
- [2] K. Koto et al., Solid State Ionics, 154-155, 741-748 (2002).
- * yashima@materia.titech.ac.jp