Covalent to ionic transition of BiCl, in LiCl-KCl eutectic melt

Yoshihiro OKAMOTO^{*1}, Tsuyoshi YAITA¹, Kazuo MINATO¹, Noriko USAMI², Katsumi KOBAYASHI²

¹Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-1195, Japan ²KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction

Structure and physical properties of polyvalent metal in molten alkali chloride solvent like LiCl-KCl eutectic are important information in the pyrochemical reprocessing of spent nuclear fuels[1]. It has been considered naturally that some important properties such as diffusion coefficient in the mixture are different from those in the pure melt.

We have obtained structural information on the structure of pure chloride melts like LaCl₃ and UCl₃ by X-ray diffraction[2] and XAFS[3] technique. In the present study, the structure of molten BiCl₃ and its mixtures in LiCl-KCl eutectic melt were investigated by using high-temperature XAFS technique.

Experimental

The Bi L_3 -edge XAFS measurements of solid and molten BiCl₃ and molten BiCl₃ in LiCl-KCl eutectic were performed in transmission method at the BL27B station in the KEK-PF. The samples were sealed off in a quartz cell under reduced pressure. Details of the XAFS measurement of molten salts are described in ref.[4]. The XAFS data was analyzed by using WinXAS code[5].

Results and discussions

Fig.1 shows Fourier transform magnitude $|FT(k^3\chi(k)|)$ of solid and molten BiCl₃, and molten 75% and 25% BiCl₃ in LiCl-KCl eutectic. Structural parameters from curve fitting analysis are listed in Table 1.

The parameters in solid state are close to the crystal structure data, in which Bi atom is surrounded by three Cl atoms with Bi-Cl distances; 2.468, 2.513 and 2.518Å. In molten state, the structural parameters did not change significantly from those in solid state. It suggests that molten BiCl₃ is a molecular liquid as reported by the neutron diffraction study[6]. The nearest Bi-Cl distance 2.48Å in molten BiCl₃ is almost the same as sum of covalent radii for Bi and Cl.

In molten 75% BiCl₃-LiCl-KCl eutectic, the parameters were still almost the same as those in solid and molten BiCl₃. On the other hand, the parameters drastically changed in molten 25%BiCl₃-LiCl-KCl eutectic. The 1st peak position is clearly shifted to longer distance (r=2.66Å) in the Fig.1. It is relatively close to sum of ionic radii for Bi and Cl. In addition, the coordination number increased from 3 to 4. It can bee seen that transition from covalent to ionic bonding occurred between 75% and 25%BiCl₃ concentration. This result

Fig.1 Fourier transform magnitude $|FT(k^3c(k)| \text{ of solid})$ and molten BiCl₃, and molten 75% and 25%BiCl₃ in LiCl-KCl eutectic.

concluded that polyvalent metal behavior is completely different between the pure melt and the mixture melts.

Table 1 Structural parameters of the nearest Bi-Cl

	N _{Cl}	r _{Bi-Cl} (Å)	$\sigma^{2}_{Bi-Cl}(\text{\AA}^{2})$
solid BiCl ₃	3.0	2.54	0.0063
molten BiCl ₃	3.3	2.48	0.0072
molten 75%BiCl ₃	3.1	2.52	0.0100
molten 25%BiCl ₃	4.1	2.66	0.0104

References

[1]O.Shirai et al., J.Nucl.Sci.Tech. Suppl.-3(2002)745.
[2]Y.Okamoto et al., J.Alloys & Comp., 271-273(1998) 355.

[3]Y.Okamoto et al., J.Mol.Struct., 641(2002)71.

[4]Y.Okamoto et al., Nucl.Inst.Meth.Phys.Res. A, **487** (2002)605.

[5]T.Ressler, J.Synchrotron Rad., 5(1998)118.

[6] Y.Fukushima et al., Kakuriken Houkoku, **9**(1976)235-240

* okamoto@molten.tokai.jaeri.go.jp