Li de-intercalate mechanism of the layered LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂

Hironori KOBAYASHI*¹, Yoshinori ARACHI², Shuichi EMURA³, Hiroyuki KAGEYAMA¹

¹AIST, Ikeda, Osaka, 563-8577 Japan

²Kansai University, Suita, Osaka, 564-8680 Japan

³Osaka University, Ibaraki, Osaka, 567-0047 Japan

Introduction

Layered LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂ is one of the promising cathode materials of lithium secondary battery. LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂ adopts a hexagonal unit cell like LiCoO2 and LiNiO2 and displays a reversible capacity of 170 mAh/g in the voltage range 2.5 to 4.5 V [1]. In addition, this material shows the superior characteristics of a larger capacity than LiMn₂O₄ and better thermal stability than LiNiO₂. Furthermore, it is expected to be stable at elevated temperatures. On the other hand, the structure and physical properties of the solid solution Li₁- $_{\nu}Ni_{1/3}Mn_{1/3}Co_{1/3}O_2$ are still ambiguous. Detailed information on the structure and the valence state of the cations in Li_{1-v}Ni_{1/3}Mn_{1/3}Co_{1/3}O₂ is very important in order to improve the electrochemical properties of $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ and, therefore, the relationships between the chemical composition, the structure, and electrochemical properties were studied in this study.

Experimental

LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂ was synthesized in air at 1273 K for 24 h using appropriate molar ratios of LiOH·H₂O, Mn(CH₃COO)₂·6H₂O, Ni(CH₃COO)₂·6H₂O, and Co(CH₃COO)₂·6H₂O and de-lithiated samples were electrochemically prepared using coin-type cells with Li/1M LiPF₆ in EC:DEC(1:1)/samples. The Ni/Mn/Co valence states of samples were determined by the Ni/Mn/Co *K*-edge XANES spectra. Structural changes were investigated by neutron diffraction and Ni/Mn/Co *K*-edge EXAFS measurements.

Results and discussion

LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂ was single-phase and adopted the α -NaFeO₂ structure. The Ni, Mn and Co K-edge XANES spectra show that LiNi1/3Mn1/3Co1/3O2 can be represented as $\text{Li}(\text{Ni}^{2+}_{1/3}\text{Mn}^{4+}_{1/3}\text{Co}^{3+}_{1/3})\text{O}_2$. The lattice parameters a and c and the fraction of Ni on the 3a site decreased compared with LiNi_{0.5}Mn_{0.5}O₂ [2-4]. Structural analysis using neutron diffraction data demonstrated that the lattice parameters of $\text{LiNi}_{1/3}\text{Mn}_{1/3}\text{Co}_{1/3}\text{O}_2$ are a =2.860 Å and c = 14.22 Å and that the chemical composition can be expressed referring to the Wyckoff positions 3a and 3b with space group R3m as $[Li_{0.97}Ni_{0.03}]_{3a}[Li_{0.03}Mn_{0.33}Ni_{0.30}Co_{0.33}]_{3b}O_2$. All the delithiated samples were the single-phasic property and Li_{1-v} $Ni_{1/3}Mn_{1/3}Co_{1/3}O_2$ (y = 0.7) corresponded to the composition for showing charge capacity of 194 mAh/g. Figure 1 shows the Ni K-edge XANES spectra. The Ni K-edge XANES results showed that divalent nickel metal is oxidized to tetravalent through trivalent after charging.

Figure 2 shows the composition dependence of *M*-O (*M*=Ni,Mn,Co) bondlength. The Ni and Co *K*-edge XAFS results showed that the first neighbor *M*-O bondlength decreased as a result of reduction in the ionic radius of nickel with decreasing in Li content. On the other hand, the Mn-O bondlength almost showed constant values. These results indicated that Li de-intercalation proceeded by the valence state change form Ni²⁺ to Ni^{3.5+} and Co³⁺ to Co^{3.5+}.

Fig. 1 Ni K-edge XANES spectra for Li_{1-1} , $Vi_{1/3}Mn_{1/3}Co_{1/3}O_2$.

Fig. 2 Composition dependence of *M*-O bondlength obtained from XAFS analysis for $Li_{1-y}Ni_{1/3}Mn_{1/3}Co_{1/3}O_2$.

References

- [1] N. Yabuuchi et al., J. Power Sources, 119-121, 171 (2003).
- [2] H. Kobayashi et al., J. Mater. Chem., 13, 590 (2003).
- [3] Y. Arachi et al, Chemistry Letters 32, 60 (2003).
- [4] H. Kobayashi et al., J. Mater. Chem., 14, 40 (2004).
- * hironori-kobayashi@aist.go.jp