In Situ Observation of Corrosion at liq./sol. Interfaces (II)

Masao KIMURA^{*1}, Noriaki OHTA² and Hiroshi KIHIRA³ ¹ Adv. Tech. Res. Lab., Nippon Steel Corp., Futtsu, Chiba, 293-8511, Japan ² Nippon Steel Technoresearch, Chiba 293-8500, Japan ³ Steel Res. Lab., Nippon Steel Corp., Futtsu, Chiba, 293-8511, Japan

Introduction

Electrochemical reactions are widely found in applicative as well as fundamental fields, such as corrosion, battery, catalysis and so on. One of its characteristics is that they occur at liquid/solid interfaces. A new system ("EVA"[1]) was developed for *in situ* observation of reactions at the interface by G-GIXS[2]. In this study, a new system was utilized for *in situ* observation of steel corrosion.

Experiments

In order to perform *in situ* observation of electrochemical reactions at liquid/solid interfaces, a of new system ("EVA") has been developed. A part of the goniometer of the "EVA" system was shown in Fig.1. A specimen surface under a liquid film can be investigated by X-ray scattering. Changing the energy of incident beam and the incident angle of x-ray can control the measured depth easily.

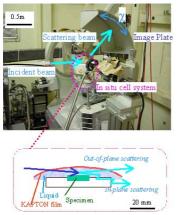


Figure 1 A part of the goniometer of the "EVA" system (above) and a sketch of *in situ* cell system (below).

In situ measurements were performed for a block specimen of the advanced weathering steel (Fe-0.4Cu-2.0Ni ,in mass%) [3]. The surface of the specimen was covered with a thickness of ca. 20 μ m of diluted artificial seawater and then dried in air at 300 K. One wet-dry cycle was about 90 min. X-ray diffraction patterns were measured with E=12.399 keV using an image plate at BL-3A at PF, KEK, Tsukuba, Japan.

Results and Discussion

Figure 2 shows scattering intensities at (a) t=0, (b) t=33, and (c) t=91 min. after the seawater covered the surface. The angle of incidence was kept at 1.0 degree. At t=0

min. surface was covered by the film of sea water and the diffraction intensities from the substrate (bcc iron) were observed. At t=33 min. the surface was still wet but the thickness of sea-water film was less than 20 μ m. Formation of Fe(OH)₂ was clearly observed. At t=91 min. the surface was almost dry. Diffraction peaks show the formation of γ -FeOOH and Fe₃O₄.

These results show early stage of reactions of the advanced weathering steel. When the surface gets wet, dissolved ferrous ions form Fe(OH)₂. In the transition from a wet to a dry state, Fe(OH)₂ transforms into γ -FeOOH and Fe₃O₄ through oxidation by oxygen in air and seawater. Fe₃O₄ remained in the following dry cycle in the case of advanced weathering steel, whereas Fe₃O₄ was easily oxidized to form α - and/or γ -FeOOH in a dry cycle in the case of conventional weathering steel[4]. This is the unique feature is deeply relating with high corrosion resistance of the advanced weathering steel [5].

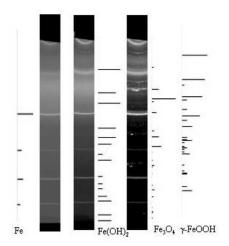


Figure 1 Scattering intensities measured by image plates at t=0 (left), t=33 (middle), and t=91 (right) min.

We would like to thank Drs. T. Mori, M. Tanaka and T. Matsushita at PF for their great supports for experiments.

References

[1] M. Kimura et al.: PF Act. Rep. #19 Part B, p.227 and #20 Part B, p.202 (2003).

- [2] M.Kimura t al.: J. App. Phys., 4, 2034(2003).
- [3] H. Kihira et al: Zairyo-to-Kankyo, 49, 30 (2000).
- [4] M. Kimura et al: J. Japan Inst. Metals, 66, 166 (2002).
- [5] M. Kimura et al: Procds. of the 13th Asian-Pacific
- Corrosion Control Conference (Osaka, 2003).
- * kimura@re.nsc.co.jp