3A/2001G049

XMCD Study on Electronic and Spin States of Co in $La_{1x}Sr_xCoO_3$ ($0 \le x \le 0.6$)

Takayasu HANASHIMA¹, Satoshi AZUHATA¹, Kouji YAMAWAKI¹, Norio SHIMIZU¹, Takeharu MORI², Masahiko TANAKA², Satoshi SASAKI^{*1}

¹ Materials and Structures Lab., Tokyo Inst. Tech., Nagatsuta, Yokohama 226-0803, Japan

² KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction

The end-member compound $LaCoO_3$ is considered to be a nonmagnetic semiconductor in the low-spin state of Co^{3+} at low temperature. Magnetic susceptibility slowly increases with temperature and reaches a maximum broad peak at $T \cong 100$ K [1,2]. Nonmagnetic $LaCoO_3$ is considered to transform into paramagnetic $LaCoO_3$ with the spin-crossover phenomenon around 100 K.

When holes can be doped into LaCoO, by substituting Sr for La, the transport mechanism of La_{Ly}Sr_yCoO₃ compounds changes from that of a nonmagnetic semiconductor to that of a ferromagnetic metal for $x \ge 0.2$ up to the other end-member of SrCoO₃. As well as $LaCoO_3$, the complicated spin-state of $La_{1,x}Sr_xCoO_3$ affects the magnetic and electronic properties, which vary as functions of doped hole concentration x. The origin of itinerant electrons was considered to be the freezing of super-paramagnetic clusters (x < 0.3) and long-range ferromagnetic order ($x \ge 0.3$) [3,4]. A site-selective and valence-selective XMCD study is required for the Co K absorption edge to elucidate the relationship between magnetic property and crystal structure in terms of the hybridization between the 3d and 4p states through the ligand 2p state.

Experimental

Powder crystals of $La_{1,x}Sr_{x}CoO_{3}$ were synthesized from appropriate molar mixtures, having the Sr contents of x = 0, 0.2, 0.3, 0.4, 0.5 and 0.6.

XANES and XMCD experiments were carried out on the BL-3A. The horizontally polarized white X-rays were monochromatized by the Si(111) double-crystal monochromator. The beam size limited by a slit was 3^(H) x 2^(V) mm² at the sample position. The intensity after transmitting through the sample was measured with 300 mm ionization chamber which was filled with 75% N₂ + 25% Ar gas.

The difference in the absorption coefficients for rightand left-circularly polarized X-rays was measured with spins parallel and antiparallel to the direction of light travel. The incident beam was guided into a synthetic single crystal of (001) diamond with a thickness of 0.492 mm in order to produce circularly polarized X-rays. A standard transmission setup was used with the Faraday arrangement, where X-rays irradiates the sample through a pair of pinholes in rare-earth magnets in a magnetic field of 0.4 T.

Results and discussion

In Fig. 1, a negative XMCD peak was clearly observed for pure LaCoO₃ at E = 7.719 keV within the threshold region of the main edge, suggesting the existence of the intermediate-spin state of Co³⁺. A positive XMCD peak appeared at E = 7.723 keV by Sr substitution of La in LaCoO₃ (x ≥ 0.2) in accordance with the low-spin state of Co⁴⁺ and X-ray absorption near-edge-structure (XANES) spectra. A negative XMCD peak was also observed at the pre-edge, which can be explained as the hybridization with the neighboring Co⁴⁺ in the dipole transition. The dispersion-type XMCD signals at the main edge may be rationalized with the hypothetical double-exchange interaction between Co³⁺ and Co⁴⁺.

Fig. 1: Compositional change of the XMCD spectra of $La_{1,x}Sr_xCoO_3$ ($0 \le x \le 0.6$) at the Co *K* absorption edge.

References

- [1] R. Heikes et al., Physica (Amst.) 30, 1600 (1964).
- [2] S. Yamaguchi et al., Phys. Rev. B 53, R2926 (1996).
- [3] M. Itoh et al., J. Phys. Soc. Jpn. 63, 1486 (1994).
- [4] P. Ganguly et al., J. Phys. Cond. Mat. 6, 533 (1994).

* sasaki@n.cc.titech.ac.jp