Structural behavior of hydrous ringwoodite at high pressure and its estimated maximum hydrogen content

Yasuhiro KUDOH $^{* 1}$, Takahiro KURIBAYASHI ${ }^{1}$, Hiroki MIZOBATA ${ }^{1}$, Eiji OHTANI ${ }^{1}$, Satoshi SASAKI ${ }^{2}$ and Masahiko TANAKA ${ }^{3}$

${ }^{1}$ Institute of Mineralogy, Petrology, and Economic Geology, Faculty of Science, Tohoku University, Sendai 980-8578, Japan
${ }^{2}$ Materials and Structures Laboratory, Tokyo Institute of Technology Nagatuda, Yokohama 226-8503, Japan
${ }^{3}$ Institute of Materials Structure Science, High Energy Accelerator Reasearch Organization, Oho, Tukuba, 305-0801, Japan

Sets of X-ray diffraction intensities up to 7.9 GPa of a single crystal of $35 \times 35 \times 24$ micron hydrous ringwoodite $\mathrm{Mg}_{1.97} \mathrm{SiH}_{0.06} \mathrm{O}_{4}$, synthesized by Ohtani and Mizobata (1998) using a multi-anvil apparatus at conditions of $1680^{\circ} \mathrm{C}$ and 22 GPa were measured using synchrotron radiation at the beam line BL-10A, Photon Factory, High Energy Accelerator Reasearch Organization, Tukuba, Japan. The modified MerrillBassett type diamond anvil pressure cell was used. The 4:1 fluid mixture of methanol and ethanol was used for pressure medium. The compressibility of the unit cell is close to the compressibility of the MO_{6} octahedron. The mean Si-O distance stay almost constant up to 7.9 GPa (Fig. 1). The compression of the crystal structure is governed by the compression of MO_{6} octahedron, being consistent to the fact that the bulk modulus is affected significantly by the substitution of Mg by 2 H . The octahedral shared edges are compressed more than the unshared edges, keeping the edge lengths of SiO_{4} tetrahedron almost constant. Based on the assumption that the vacant octahedral sites are separated each other with equal distances, the maximum $\mathrm{H}_{2} \mathrm{O}$ content was obtained from the configuration with minimum separation distances (Fig. 2). The maximum $\mathrm{H}_{2} \mathrm{O}$ contents were thus estimated to be $3.3 \mathrm{wt} \%$.

P (GPa)	0.00	3.2	5.0	6.2	7.9
Lattice parameters					
$\boldsymbol{u}\left({ }^{(1)}\right.$	8.065(1)	8.014(1)	$7.996(2)$	7.993(2)	7.962(1)
$V\left(A^{3}\right)$	524.6(1)	514.6 (3)	511.2(3)	510.6 (4)	504.8(3)
Wavelength (\AA)	0.6998	0.7017	0.6958	0.6961	0.7019
Radiation	Synchrotron	Synchrotron	Synchrotron	Synchrotron	Synchrotron
Maximum $2 \theta\left({ }^{\circ}\right.$)	70.6	85.9	86.2	89.5	88.5
No. of f_{6} measured	390	928	1071	1067	1077
Independent I_{0} used	$74^{\text {a }}$	$64^{\text {b }}$	$50^{\text {b }}$	$53{ }^{\text {b }}$	$55^{\text {b }}$
$R(\%)$	5.3	8.5	5.5	7.4	4.8
Atomic parameters					
M site ($\left.\mathrm{Mg}_{0.98} \square_{0.02}\right)$					
x	1/2	1/2	1/2	1/2	1/2
$B(e q)$	0.353(1)	$0.655(1)$	$0.727(2)$	1.174(2)	0.710(1)
T site ($\mathrm{Si}_{1, \ldots 0}$)					
x	1/8	1/8	1/8	1/8	1/8
$E(e q)$	$0.421(1)$	$0.559(1)$	0.686(1)	0.959(1)	0.586(1)
Oxygen site					
x	$0.2431(3)$	0.2428(5)	$0.2437(7)$	0.2441(6)	0.2444(4)
$E(\mathrm{eq})$	0.650(1)	$0.594(1)$	$0.601(2)$	0.793(2)	0.616(1)

Fig. 1. Mean Mg-O distance, lattice constant and mean SiO distance versus pressure.

Fig. 2. Minimum separation distance $d(=5.703 \AA)$ of vacant octahedra.

References

[1] E. Ohtani, H. Mozobata, Intern. Miner. Assoc. 17th
General Meeting, Abstract, A43 (1998)
[2] Y. Kudoh, H. Takeda, Physica 139\&140 B, 333 (1986)
*ykudoh@mail.tains.tohoku.

