10A/2003G024

Effect of pressure on the crystal structure of dense hydrous magnesium silicate Al-phase E

Yasuhiro KUDOH^{*1}, Takahiro KURIBAYASHI¹, Satoshi SASAKI² and Masahiko TANAKA³

¹Institute of Mineralogy, Petrology, and Economic Geology, Faculty of Science,

Tohoku University, Sendai 980-8578, Japan

²Materials and Structures Laboratory, Tokyo Institute of Technology Nagatuda,

Yokohama 226-8503, Japan

³Institute of Materials Structure Science, High Energy Accelerator Reasearch Organization, Oho, Tukuba, 305-0801, Japan

A single crystal of Al-phase E, was synthesized by Kawamoto et al. (1995)[1] using a multi-anvil apparatus at conditions of 9.3 GPa and 875 °C. Electron microprobe analysis of the specimen showed a chemical composition of 39.7wt% SiO₂, 4.9 wt% Al₂O₃, 9.5 wt% FeO, and 45.9 wt% MgO, yielding at total (H₂O excluded) wt% of 87.2 If the difference of the total weight is ascribed to H₂O, the unit cell content is calculated to be $Mg_{1.98}Fe_{0.23}Al_{0.17}Si_{1.15}H_{2.47}O_6$. A blue transparent single crystal fragment, 59x35x24µm in size, was placed in the modified Merrill-Bassett type diamond anvil pressure cell. The 4:1 fluid mixture of methanol and ethanol was used for pressure medium and SUS301 plate was used for gasket. The pressure was calibrated using the ruby fluorescence method. Sets of X-ray diffraction intensities at high pressures up to 3.8 GPa were measured using synchrotron radiation at the beam line BL-10A, Photon Factory, High Energy Accelerator Reasearch Organization, Tukuba, Japan. The wave length λ =0.6984 Å) was calibrated by the unit cell constants of a ruby standard crystal. Data at room pressure were measured with MoKa radiation using another fragment, 94x47x24µm in size, of the same single crystal. Table 1 lists the mode of data collection. Lattice constants at various pressures are presented in Table 2. The Al-bearing phase E has significantly short c-axis repeat period compared to that of the Al-free phase E. Kudoh et al. (1993) reported the lattice constants, a=2.9701(1) Å, c=13.882(1) Å, V=106.06(4) Å³ for phase E , $Mg_{2.08}Si_{1.16}H_{3.20}O_6$, and a=2.9853(6) Å, c=13.9482(7) Å, V=107.65(4) Å³ for phase E , $Mg_{2.17}Si_{1.01}H_{3.62}O_6$. Yang et al. (2002) reported the lattice constants, a=2.981(1) Å, c=13.898(3) Å, V=107.0(1) Å³ for phase E , $Mg_{2.22}Fe_{0.52}Si_{0.98}H_{2.08}O_6$. The short repeat period of the Al-bearing phase E is considered to be due to the occupation of Al³⁺ at octahedral site by replacing Mg²⁺. As pointed out by Yang et al. (2002)[2], the following three mechanism may be the most important and common for the substitution of trivalent cation into phase E:

(1) $2R^{3+} + \Box \rightarrow 3Mg^{2+};$ (2) $R^{3+} + H^+ \rightarrow Si^{4+};$

(3) $2R^{3+} \rightarrow Mg^{2+} + Si^{4+};$

'□' means vacancy.

In the case of Al-phase E, $R^{3+} = Al^{3+}$. Since the ionic radii of ${}^{iv}Al^{3+}(=0.39\text{\AA}) > {}^{iv}Si^{4+}$ (=0.26 Å) and $^{vi}Al^{3+}(=0.53\text{\AA}) < ^{vi}Mg^{2+}$ (=0.72 Å), the facts that the unit cell volume of Al-bearing phase E is smaller than that of Al-free phase E at room pressure and the compressibility of the c-axis is slightly larger than that of the a-axis indicate that mechanism (1) should dominate for the formation of Al-bearing phase E.

Table 1. Mode of data collection

Size of the crystal	59x35x24µm
Wave length	0.6984 Å
$2\theta_{\text{max}}$	85°
Scan mode	ωscan

Table 2. Lattice	constants a	t various	pressures
------------------	-------------	-----------	-----------

		1		
P (GPa)	a (Å)	c (Å)	$V(Å^3)$	
0.0*	2.968	13.798	105.3	
1.5	2.956	13.731	103.9	
3.4	2.945	13.678	102.7	
3.8	2.938	13.642	102.0	
*Data at	room	pressure were	maggurad	with

Data at room pressure were measured with MoK α radiation.

T 11 0	T	•		•	
Toble 7	I office	00000000000000	ot	110110110	101000111000
Tame 1	гание	COMPRESSION	21	various	meximer
ruore J.	Duttice	compression	uı	various	pressures

P (GPa)	a /a ₀	c /c ₀	V /V ₀
1.5	0.9960	0.9951	0.9867
3.4	0.9923	0.9913	0.9753
3.8	0.9899	0.9887	0.9687

References

- [1] T. Kawamoto, K. Leinenweber, R. L. Hervig, J. R. Holloway, Proceedings of Conference of Volatiles in Deep Earth and Planets, American Institute of Physics, (1995)
- [2] H. Yang, C. T. Prewitt, Z. Liu, J. Mineral. Petrol. Sci., 97, 137 (2002)

*ykudoh@mail.tains.tohoku.ac.jp