Crystallographic study of rice α -galactosidase

Zui FUJIMOTO^{*1}, Satoshi KANEKO², Mitsuru MOMMA¹, Hideyuki Kobayashi², Hiroshi MIZUNO¹

¹National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan ²National Food Research institute, Tsukuba, Ibaraki 305-8602, Japan

Introduction

In plants, galactomannan is major storage polysaccharides in seeds, and α -Galactosidase (α -Gal; EC 3.2.1.22) is one of the key enzymes in the degradation of cell wall galactomannan during germination. α -Gals catalyze the hydrolysis of α -1,6-linked α -galactosyl residues from galacto-oligosaccharides and polymeric galacto-(gluco)mannans. α -Gals are widely distributed in animals, plants, and microorganisms. Recently we have succeeded in the cDNA cloning, expression, purification and crystallization of the glycosyl hydrolase family 27 α -Gal from rice cell cultured suspension. To know the structural bases, we conducted the X-ray crystallographic analysis of rice α -Gal.

Experimental

The needle and/or rod-shaped crystals of rice α -Gal were obtained within two weeks on mixing 5 µl of protein solution (15 mg/ml) with 5 µl of reservoir solution (5% 2-propanol, 0.1 M ammonium sulfate, 0.1 M acetate buffer pH4.5 with 5% D-galactose) at 293 K employing the hanging-drop vapor diffusion method. Diffraction experiments on the native crystals were first carried out at beamline BL6A, Photon Factory, Tsukuba, Japan. α -Gal crystals were flash-frozen in a nitrogen stream at 100 K using 20 % glycerol as a cryo-protectant. Diffraction data were collected using a Quantum CCD X-ray detector. Structure determination was conducted by the multiple isomorphous replacement (MIR) method using Hg and Au derivatives. The structure was refined to an R-factor of 16.0 % and an R_{free}-factor of 17.8% (Table 1).

Table 1: Structure refinement statistics of rice αgalactosidase

Cell parameter $(P2_12_12_1)$	
a (Å)	63.7
<i>b</i> (Å)	71.4
<i>c</i> (Å)	84.2
Resolution (Å)	30-1.5
No. of reflections in refinement	61,697
Completeness (%)	97.0
R-factor (%)	16.0
R_{free} -factor (%)	17.8
v	

Figure 1 Ribbon model of rice α -Gal.

Results

The final model of rice α -Gal is composed of a single chain of 362 amino acids and can be divided into a catalytic domain, and a C-terminal domain (Fig. 1). The catalytic domain of rice α -Gal comprised a (β/α)₈-barrel. The active site pocket was located on the C-terminal side of the central β -barrel of the catalytic domain, where a Dgalactose molecule, which was added in the crystallization condition, was identified as a binding ligand. The C-terminal domain comprises eight β -strands containing a Greek key motif.

We made structural comparisons of rice α -Gal with chicken α -N-acetylgalactosaminidase, which belongs to the same family 27 of glycosyl hydrolases and folds into the similar overall structure, with a view toward understanding the substrate recognition mechanism in these enzymes.

References

[1] Z. Fujimoto *et al.*, Acta Crystallog. Sect. D Biol. Crystallog. **58**, 1374 (2002).

[2] Z. Fujimoto et al., J. Biol. Chem. 278, 20313 (2003).

* zui@affrc.go.jp