Resonant Raman scattering in 1s-shell photoionization of N₂ molecules

Tatsuji HAYAISHI^{*1}, Satoshi IIZUKA¹, Hiroshi YOSHII², Eigoro MURAKAMI³, Jun-ichi ADACHI⁴, and Akira YAGISHITA⁴

¹Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

²Faculty of Medical Science, University of Fukui, Matsuoka, Fukui 910-1193, Japan

³Department of Physics, Chiba Institute of Technology, Narashino, Chiba 275-0023, Japan

⁴KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction

In inner-shell photoionization of atoms and molecules with light atomic weight, singly charged ions of atoms and parent ions of molecules are possibly observed in coincidence with threshold photoelectrons [1]. Normally, doubly charged ions or more are produced from Auger decays following inner-shell photoionization. Observation of singly charged ions and parent ions discloses participation of radiative decays instead of Auger decays. Namely, the decay process can be expressed as follows,

 $hv_1 + M \rightarrow M^+ + e^-$ (threshold) $+ hv_2$. This process is the so-called continuous radiative resonant Raman scattering [2].

Experimental method

Experiments were carried out at the undulator beamline BL-2C. The beam line is equipped with a grazing incidence soft X-ray monochromator. A varied space plane grating with 1000 lines/mm was used. The spectral resolution of the monochromator with $100\mu \times 50\mu$ slits was about 0.15 eV at 400 eV photon energy. Multiply charged ions in coincidence with threshold electrons were measured using a time-of-flight mass spectrometer coupled with a threshold-electron energy analyzer. The energy resolution of the analyzer was estimated to be about 0.03 eV.

Results and discussion

Figure 1 shows the yield spectra of N_2^+ , N^+ and N^{++} ions in coincidence with threshold photoelectrons near the 1s-shell photoionization region of N_2 molecules. The total yield spectrum of ions is correspond to the photoabsorption spectrum, and exhibits some resonance peaks of 1s-shell photoexcitation. The yield spectrum of threshold photoelectrons exhibits a broad and distorted profile due to post-collision interaction (PCI) [3] near the 1s-shell photoionization threshold, including the some resonance peaks.

These resonance peaks and the PCI profile are reflected in the coincidence yield spectra of N_2^+ , N^+ and N^{++} , too. It is worth noting that the $1s^{-1}\pi^*$ resonance peak at about 401 eV and the profile due to 1s-shell threshold photoionization at about 410 eV are dominant in these coincidence yield spectra. The PCI profiles in the coincidence yield spectra of N^+ and N^{++} originate in Auger decays following 1s-shell threshold photoionization. On the other hand, the coincidence yield spectrum of N_2^+ exhibits a narrow peak just the 1s-shell photoionization threshold of N_2 . It is conceivable that the peak is due to continuous radiative resonant Raman scattering [2]. Figure 1. Yield spectra of ions, threshold electrons and N_2^+ , N^+ , N^+ in coincidence with threshold electrons near the

1s-shell photoionization region of N₂ molecules.

References

- [1] E. Murakami et al., PF Activity Rep. 20, B, 12 (2002).
- [2] T. Åberg and B. Crasemann, "Resonant anomalous X-
- ray scattering" pp. 431-448 (Elsevier Science) (1994). [3] T. Hayaishi *et al.*, J. Phys. B. **27**, L115 (1994).

*hayaishi@bukko.bk.tsukuba.ac.jp