Structural study of Ni complexes in the solvent extraction system

Hirokazu NARITA^{*1}, Mikiya TANAKA¹, Tsuyoshi YAITA², Yoshihiro OKAMOTO² ¹National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba,

Ibaraki 305-8569, Japan

²Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan

Introduction

The recently growing demand for electroless nickel plating has increased the need for the recovery of nickel. We are now studying the nickel(II) extraction properties using LIX84I (2-hydroxy-5-nonylacetophenone oxime) and D2EHPA (bis(2-ethylhexyl) phosphoric acid) [1]. However, the structures of their extracted complexes are still obscure. In this study, we have investigated the coordination structures of nickel(II) complexes with LIX84I and D2EHPA by the XAFS method.

Experimental

The Ni-LIX84I (Ni-L) and Ni-D2EHPA (Ni-D) solution complexes were prepared by solvent extraction: LIX84I or D2EHPA in *n*-dodecane – NiSO₄ solution adjusted to the appropriate pH value using NaOH solution. The Ni-phthalocyanine (Ni-Pc) and Ni aqueous solution (Ni-Aq) and samples were prepared by pressing the Ni-Pc solid (Aldrich) and by dissolving NiCl₂ into water, respectively. All of the XAFS spectra were measured in transmission mode at the BL-7C station in the KEK-PF. The experimental data were analyzed by WinXAS Ver. 3.0 [2] and fit using theoretical phase and amplitudes calculated from the program FEFF 8 [3].

Results and Discussion

Figure 1 shows the Ni K-edge XANES spectra of the Ni-L, Ni-D, Ni-Aq and Ni-Pc samples. The spectrum of the Ni-D complex is significantly different from that of the Ni-L one but similar to that of Ni-Aq. Since the Ni(II) aqueous solution has six-coordinated Ni ions [4], the Ni(II) ion in the Ni-D complex would be octahedral. The Ni-L complex shows almost the same spectrum as the Ni-Pc complex. In the Ni-Pc complex, the Ni(II) ion is

Fig. 1 Ni K-edge XANES spectra.

coordinated with nitrogen atoms in a square planar geometry [5]. Additionally, these XANES spectra have a distinct peak at ~8335 eV, which is attributed to the $1s \cdot 4p_z$ transition. This peak is characteristic of a square planar metal complex [6]. Therefore, the Ni(II) ion in the Ni-L complex would be square planar.

Fig. 2 Fourier transforms of Ni K-edge EXAFS spectra. The phase shifts are not corrected.

The Fourier transforms of the Ni K-edge EXAFS spectra are shown in Fig. 2. The first peak in the spectrum of the Ni-L corresponds to the Ni-O/-N(oxime) correlations. In the spectrum of the Ni-D, the first peak appears at a larger R. This peak corresponds to the Ni-O(phosphoric acid or water) correlations. The results of the curve fits for the first peak indicate the presence of 4.1(6) O/N atoms at 1.85(1) Å for the Ni-L and 5.6(9) O atoms at 2.04(1) Å for the Ni-D. Their coordination number is consistent with the XANES data; square planar for the Ni-L and octahedral for the Ni-D. The difference in the bond distance between the Ni-L and Ni-D (0.19 Å) is similar to that of the ionic radius between the four and six coordination of Ni(II) (0.14 Å) [7].

References

- [1] M. Tanaka et al., "Proceedings of EPD Congress 2004", 2004, TMS, Pennsylvania, p. 681.
- [2] T. Ressler, J. Synch. Rad., 5, 118 (1998).
- [3] A. L. Ankudinov et al., Phys. Rev. B 58, 7565 (1998).
- [4] H. Ohtaki et al., Chem Rev. 93, 1157 (1993).
- [5] C. J. Schramm et al., J. Am. Chem. Soc., **102**, 6702 (1980).
- [6] R. A. Scott, Physica B **158**, 84 (1989); L. X. Chen et al., Science, **292**, 262 (2001).
- [7] R. D. Shannon, Acta Cryst., A 32, 751 (1976).
- * hirokazu-narita@aist.go.jp