Chlorination of polyvalent metal oxide in molten salts

Yoshihiro OKAMOTO*, Tsuyoshi YAITA1, Kazuo MINATO1, Noriko USAMI1, Katsumi KOBAYASHI2
1Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-1195, Japan
2KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction
In the pyrochemical reprocessing of spent nuclear fuels, chlorination of polyvalent oxides like UO2 etc. is an important reaction. Recently, a chlorination reaction using ZrCl4 with LiCl-KCl eutectic melt was proposed by Sakamura et al.[1]. For example, the chlorination of yttrium oxide is expressed as following chemical reaction:

\[\text{Y}_2\text{O}_3 + (3/2)\text{ZrCl}_4 \rightarrow 2\text{YCl}_3 + (3/2)\text{ZrO}_2 \]

It is very significant to know nature of the chlorination reaction, for example, a temperature dependence etc. In the present work, the chlorination reaction of Y2O3 was observed by using in situ XAFS measurement.

Experimental
The Y K-edge (E0=17.080keV) XAFS measurements of Y2O3 and YCl3 were performed in transmission method at the BL27B station in the KEK-PF. The Zr K-edge (E0=17.998keV) XAFS data was also obtained by extending the Y K-edge XAFS measurement. The starting sample was a mixture of Y2O3-ZrCl4(1:2) in LiCl-KCl eutectic. The samples were sealed off in a quartz cell under reduced pressure. Details of the XAFS measurement of molten salts are described in ref.[2]. The XAFS data was analyzed by using WinXAS code[3].

Results and discussions
Fig.1 shows raw XAFS spectra of the LiCl-KCl-Y2O3-ZrCl4 mixture sample before and after heating. There are two XAFS data in each curve. They are Y K-edge and Zr K-edge(E0=17.998keV) XAFS, respectively. The Y K-edge XAFS curve before heating is clearly different from that after heating. An edge jump of the Zr K-edge XAFS became very weak after the heating. It suggests that Y2O3 changed to YCl3 and ZrCl4 disappeared by the heating.

Fourier transform magnitude functions \(|\text{FT}(k\chi(k))|\) of the mixture sample before and after heating are shown in Fig.2. Chemical state of Y can be evaluated from difference in the distance between Y-O and Y-Cl correlation. At 500°C, the Y-O correlation is predominant, although the sample is in molten state. On the other hand, the 1st peak shows the Y-Cl correlation at 550°C. It can be concluded that the reaction occurs between 500 and 550°C. The XAFS result after cooling to 500°C was almost the same as that of LiCl-KCl-YCl3 mixture melt[4].

![Fig.1 Raw XAFS spectra of the LiCl-KCl-Y2O3-ZrCl4 sample before and after heating.](image)

![Fig.2 Fourier transform magnitude |FT(k\chi(k))| of the LiCl-KCl-Y2O3-ZrCl4 sample before and after heating. Dashed line shows XAFS result of molten 15%YCl3 in LiCl-KCl eutectic.[4]](image)

References

* okamoto@molten.tokai.jaeri.go.jp