Chlorination of polyvalent metal oxide in molten salts

Yoshihiro OKAMOTO^{*1}, Tsuyoshi YAITA¹, Kazuo MINATO¹, Noriko USAMI², Katsumi KOBAYASHI²

¹Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-1195, Japan

²KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction

In the pyrochemial reprocessing of spent nuclear fuels, chlorination of polyvalent oxides like UO₂ etc. is an important reaction. Recently, a chlorination reaction using ZrCl₄ with LiCl-KCl eutectic melt was proposed by Sakamura et al.[1]. For example, the chlorination of yttrium oxide is expressed as following chemical reaction, $Y_2O_3 + (3/2)ZrCl_4 \rightarrow 2YCl_3 + (3/2)ZrO_2$

It is very significant to know nature of the chlorination reaction, for example, a temperature dependence etc. In the present work, the chlorination reaction of Y_2O_3 was observed by using in situ XAFS measurement.

Experimental

The Y K-edge (E_0 =17.080keV)) XAFS measurements of Y₂O₃ and YCl₃ were performed in transmission method at the BL27B station in the KEK-PF. The Zr K-edge (E_0 =17.998keV) XAFS data was also obtained by extending the Y K-edge XAFS measurement. The starting sample was a mixture of Y₂O₃-ZrCl₄(1:2) in LiCl-KCl eutectic. The samples were sealed off in a quartz cell under reduced pressure. Details of the XAFS measurement of molten salts are described in ref.[2]. The XAFS data was analyzed by using WinXAS code[3].

Results and discussions

Fig.1 shows raw XAFS spectra of the LiCl-KCl-Y₂O₃-ZrCl₄ mixture sample before and after heating. There are two XAFS data in each curve. They are Y K-edge and Zr K-edge(E_0 =17.998keV) XAFS, respectively. The Y Kedge XAFS curve before heating is clearly different from that after heating. An edge jump of the Zr K-edge XAFS

Fig.1 Raw XAFS spectra of the LiCl-KCl-Y₂O₃-ZrCl₄ sample before and after heating.

became very weak after the heating. It suggests that Y_2O_3 changed to YCl₂ and ZrCl₄ disappeared by the heating.

Fourier transform magnitude functions $|FT(k^3\chi(k)|)$ of the mixture sample before and after heating are shown in Fig.2. Chemical state of Y can be evaluated from difference in the distance between Y-O and Y-Cl correlation. At 500°C, the Y-O correlation is predominant, although the sample is in molten state. On the other hand, the 1st peak shows the Y-Cl correlation at 550°C. It can be concluded that the reaction occurs between 500 and 550°C. The XAFS result after cooling to 500°C was almost the same as that of LiCl-KCl-YCl, mixture melt[4].

Fig.2 Fourier transform magnitude $|FT(k^3\chi(k)|)$ of the LiCl-KCl-Y₂O₃-ZrCl₄ sample before and after heating. Dashed line shows XAFS result of molten 15%YCl₃ in LiCl-KCl eutectic[4].

References

[1]Y.Sakamura et al., J.Nucl.Mater., 340(2005)39.

- [2]Y.Okamoto et al., Nucl.Inst.Meth.Phys.Res. A, **487** (2002)605.
- [3]T.Ressler, J.Synchrotron Rad., 5(1998)118.
- [4]Y.Okamoto et al., J.Synchrotron Rad., 8(2001)1191.

* okamoto@molten.tokai.jaeri.go.jp