New Reaction Path in Ammonia Formation on Rh(111) Surface

Masanari NAGASAKA, Hiroshi KONDOH, Kenta AMEMIYA, Ikuyo NAKAI, Toru SHIMADA, Reona YOKOTA, and Toshiaki OHTA* Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Introduction

Rhodium is mainly used as a three-way catalyst to convert nitrogen oxides from automotive exhausts to harmless nitrogen. Although the key step to promote the catalytic reaction is the dissociation of NO and the formation of N₂ gas, the ammonia formation from N and H is also important to understand the mechanism of the rhodium catalyst. Moreover, ammonia formation is the prototypical reaction for the sequential hydrogenation. For the ammonia formation, the N-preadsorbed Rh(111) is exposed to gaseous hydrogen at room temperature. In the past, it was believed that the reaction is the simple hydrogenation reaction: N + 2 H \rightarrow NH₂ and NH₂ + H \rightarrow NH₃ \uparrow [1]. However, our time-resolved NEXAFS experiments observed a reverse reaction from NH₂ to form N and 2 H. The mechanism of ammonia formation on Rh(111) is so complicated that theoretical simulation is necessary for full understanding.

Experimental

The experiments were performed at BL-7A under ultrahigh vacuum condition (2.0×10^{-10} Torr). Time-resolved NEXAFS is a method to measure a NEXAFS spectrum in several seconds [2].

The atomic nitrogen covered Rh(111) surface was first prepared by exposing to 1.5 L gaseous NO at 150 K, annealing at 400 K to form N and O from the dissociation of NO, and exposing to 1.4 L gaseous H₂ at 400 K to remove O atoms. For the ammonia formation, the surface was exposed to gaseous H₂ (1.0×10^{-7} Torr) at 350 K. Each N-K NEXAFS spectrum was taken in 10 sec during H₂ exposure to monitor the real-time changes in N and NH₂ coverages. Note that the amount of NH₃ was obtained from the total coverage of N and NH₂ because NH₃ is immediately desorbed in this temperature region.

Results and Discussion

Figure 1 shows a time evolution of N K-NEXAFS spectra. As increasing exposure time, the peak due to atomic N (399.3 eV) disappears. The feature derived from NH_2 (408.0 eV) first increased and decreased later. After the reaction, no adsorbates remained on the surface. To obtain the coverage of each species, the spectra were fitted by the standard spectra of N and NH_2 . Figure 2 shows the real-time change of N, NH_2 , and NH_3 during the reaction. The NH_3 curve means the total desorbed NH_3 species. The obtained changes make us gain an insight into the reaction mechanism. At first, the N coverage

rapidly decreases and NH_2 grows until the ratio of N and NH_2 becomes constant. After reaching the equilibrium, both N and NH_2 coverages decrease gradually to form NH_3 gas.

When the H_2 gas was stopped during the reaction, the peak due to N rapidly increased, while the structure due to NH_2 decreases. It clearly suggests that the new reaction path, $NH_2 \rightarrow N + 2$ H, is opened. That is why the reaction has the equilibrium due to this reverse reaction.

To interpret the experimental results and to understand the reaction mechanism in more detail, atomic-level kinetic simulation should be necessary. DFT-Monte Carlo simulations for this reaction are now underway.

References

[1] R. M. van Hardeveld et al., J. Phys. Chem. B 101, 998 (1997).

[2] K. Amemiya et al., Jpn. J. Appl. Phys. 40, L718 (2001).

* ohta@chem.s.u-tokyo.ac.jp

FIG. 1. N-K NEXAFS spectra at grazing incidence as a function of time (350 K, H₂: 1.0×10^{-7} Torr).

FIG. 2. Coverages of N, NH_2 , and NH_3 as a function of time obtained from Fig. 1. The NH_3 desorbs from the surface.