X-ray Magnetic Circular Dichroism study of MnGeP\textsubscript{2} thin film

Yoshitaka OSAFUNE*1, Yukiaki ISHIDA1, Jong-II HWANG1, Masaki KOBAYASHI1, Atsushi FUJIMORI1, Kazutoshi MAMIYA1, Hiroyuki TOKANO2, Tsuneharu KOIDE2, Kazuyuki MINAMI4, Takayuki ISHIBASHI2, Katsuaki SATO4

1Department of Physics and Department of Complexity Science and Engineering, University of Tokyo, Kashiwa 277-8561, Japan
2Photon Factory, Institute of Materials Structure Science, Tsukuba 305-0801, Japan
3Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573, Japan
4Faculty of Technology, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan

Introduction

Recently the discovery of diluted magnetic semiconductors (DMSs) which show room-temperature ferromagnetism has been a hot issue. These materials are promising candidates for spintronics devices. Some of Mn-doped II-IV-V\textsubscript{2} (chalcopyrite) type DMSs show room-temperature ferromagnetism, and attract much attention. For instance, it is reported that T_C's of ZnGeP\textsubscript{2}:Mn and CdGeP\textsubscript{2}:Mn are \approx350 K and \approx320 K respectively, well above room temperature [1, 2]. It is found that Mn atoms substitute mainly for the II (Zn, Cd) sites in these materials. By \textit{ab initio} calculations based on local density approximation, the ferromagnetism derives from the carriers which arise from the system with vacancies (II, Vc, Mn)GeP\textsubscript{2} or non-stoichiometric (II, Ge, Mn)GeP\textsubscript{2} [3]. In ZnGeP\textsubscript{2}:Mn, 100% Mn substitution i.e. MnGeP\textsubscript{2} was achieved [4].

In this work we have measured soft X-ray absorption (XAS), and soft X-ray magnetic circular dichroism (XMCD) spectra of MnGeP\textsubscript{2} thin film to clarify the electronic state and the origin of ferromagnetism of the MnGeP\textsubscript{2} thin film by studying the magnetic state of the Mn atoms.

Experimental

The MnGeP\textsubscript{2} thin film was fabricated by the MBE method. The thin film was deposited on a Ge buffer layer at 435\textdegree C which was grown on a GaAs(001) substrate at 380 \textdegree C. The Ge buffer layer enables a two-dimensional growth of MnGeP\textsubscript{2} thin film [5]. In order to eliminate surface effects, the sample was capped with a 3nm Ge layer over the thin film. The fabricated MnGeP\textsubscript{2} thin film was transferred into a superconducting magnet under an ultra high vacuum of 10^{-9} Torr. The XAS and XMCD spectra were taken in a total electron yield mode at 200 K and 30 K with applied magnetic field at 5.0 T.

We have done a magnetization measurement for the MnGeP\textsubscript{2} thin film in advance. The sample showed T_C \approx320 K and thus it was confirmed to be a room-temperature ferromagnet. Additionally the M-T curve indicated that there was a component which obeyed the Curie-Weiss law in the sample. This fact suggested that a paramagnetic component existed in the sample.

Results and Discussion

Figure 1 shows Mn $L_{2,3}$ XMCD spectra taken at $T=200$ K and 30 K at $H=5.0$ T. The intensity has been normalized to at the Mn L_3 edge. The XMCD signal was observed even at 30 K, indicating that the MnP phase is not a dominant component of the sample, because in MnP a ferromagnetic-to-anti-ferromagnetic transition occurs at 47 K. The XMCD spectra have two negative fine structures at the Mn L_3. Structure A is dominant at 200 K and structure B is dominant at 30 K. This difference may be caused by a paramagnetic component in the sample. Furthermore by applying the XMCD sum rules, M_{orb} and M_{spin} were obtained. Assuming that $n_d \approx 5.0$, $M_{orb}(200 \text{K}) \approx$0.039 μ_B/Mn and $M_{orb}(30 \text{K}) \approx$0.159 μ_B/Mn. It appears that at low temperature contributions from the paramagnetic component becomes large and that the sizable orbital magnetic moment appears.

![XMCD spectra](chart.png)

Fig. 1: Mn $L_{2,3}$ XMCD spectra of the MnGeP\textsubscript{2} thin film

References

*osafune@wyvern.phys.s.u-tokyo.ac.jp