In-situ angle-resolved photoemission study on La$_{1-x}$Sr$_x$MnO$_3$ thin films

Akira CHIKAMATSU1, Hiroki WADATI2, Hiroshi KUMIGASHIRA3, Masaharu OSHIMA4, Atsushi FUJIMORI5, Tsuyoshi OHNISHI1, Mikk LIPPMAA3, Kanta ONO4, Masashi KAW ASAKI5, and Hideomi KOINUMA6

1Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8656, Japan
2Department of Complexity Science and Engineering, The University of Tokyo, Kashiwa 277-8561, Japan
3Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan
4Institute of Materials Structure Science, KEK-PF, 1-1 Oho, Tsukuba 305-0801, Japan
5Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
6Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Introduction

Hole-doped perovskite manganese oxides La$_{1-x}$Sr$_x$MnO$_3$ (LSMO) have attracted much attention because of their interesting magnetic and electronic properties such as colossal magnetoresistance, half-metallicity, and metal-insulator transition. In order to clarify the origin of their physical properties, it is necessary to obtain the information on the band structures of these oxides and their changes as a function of hole concentration (x). In this study, we have performed in-situ angle-resolved photoemission (in-situ ARPES) study on well-ordered surfaces of LSMO ($x = 0.1, 0.2, 0.3, \text{ and } 0.4$) thin films grown epitaxially on SrTiO$_3$ (001) substrates by laser molecular beam epitaxy (laser MBE).

Experimental

The LSMO thin films were fabricated in a laser MBE chamber connected to a synchrotron radiation photoemission system at BL-1C of the Photon Factory. LSMO thin films were deposited on the TiO$_2$-terminated SrTiO$_3$ (001) substrates at 1050 ºC at the oxygen pressure of 1×10^{-7} Torr. After cooling down below 100 ºC, the films were transferred into the photoemission chamber under the vacuum of 10^{-10} Torr. The PES spectra were taken with total energy resolution of about 150 meV at the photon energy of 88 eV.

Results and Discussion

Figure 1 shows the band structure of LSMO (a) $x = 0.1$, (b) $x = 0.2$, (c) $x = 0.3$, (d) $x = 0.4$ along the Γ–X direction determined by the in-situ ARPES spectra ($h\nu = 88$ eV). As seen in Fig. 1(d), the band structures of LSMO $x = 0.4$ consist of several highly dispersive O 2p derived bands at the binding energies of $2.3 - 6$ eV, almost dispersionless Mn 3d bands at 2.0 eV, and an Mn 3d_{eg} derived electron pocket centered at the Γ point. We find that the energy positions of these bands monotonically shift toward higher binding energy with decreasing hole concentration in a rigid-band manner, whereas the electron pocket which is clearly observed in ferromagnetic metal LSMO $x = 0.4$ films gradually smears out with decreasing x, and almost disappears at ferromagnetic insulator LSMO $x = 0.1$ (Fig. 1(a)). These results suggest that the pseudogap or gap formation due to the spectral weight transfer from the near-E_F region dominates the changes in electronic structure near E_F of LSMO thin films with x.

References

*chikamatsu@sr.t.u-tokyo.ac.jp