In-situ angle-resolved photoemission study on La_{1,x}Sr_xMnO₃ thin films

Akira CHIKAMATSU^{1*}, Hiroki WADATI², Hiroshi KUMIGASHIRA¹, Masaharu OSHIMA¹,

Atsushi FUJIMORI², Tsuyoshi OHNISHI³, Mikk LIPPMAA³, Kanta ONO⁴,

Masashi KAWASAKI⁵, and Hideomi KOINUMA⁶

¹Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8656, Japan

²Department of Complexity Science and Engineering, The University of Tokyo, Kashiwa 277-8561, Japan

³Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan

⁴Institute of Materials Structure Science, KEK-PF, 1-1 Oho, Tsukuba 305-0801, Japan

⁵Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

⁶Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Introduction

Hole-doped perovskite manganese oxides La, Sr, MnO₃ (LSMO) have attracted much attention because of their interesting magnetic and electronic properties such as colossal magnetoresistance, half-matallicity, and metal-insulator transition.¹ In order to clarify the origin of their physical properties, it is necessary to obtain the information on the band structures of these oxides and their changes as a function of hole concentration (x). In this study, we have performed in-situ angle-resolved photoemission (in-situ ARPES) study on well-ordered surfaces of LSMO (x = 0.1, 0.2, 0.3, and 0.4) thin films grown epitaxially on SrTiO₂ (001) substrates by laser molecular beam epitaxy (laser MBE).

Experimental

The LSMO thin films were fabricated in a laser MBE chamber connected to a synchrotron radiation photoemission system at BL-1C of the Photon Factrory.² LSMO thin films were deposited on the TiO_2 -terminated SrTiO₃ (001) substrates at 1050 °C at the oxygen pressure of 1 x 10⁻⁴ Torr. After cooling down below 100 °C, the films were transferred into the photoemission chamber under the vacuum of 10⁻¹⁰ Torr. The PES spectra were taken with total energy resolution of about 150 meV at the photon energy of 88 eV.

Results and Discussion

Figure 1 shows the band structure of LSMO (a) x= 0.1, (b) x = 0.2, (c) x = 0.3, (d) x = 0.4 along the Γ -X direction determined by the *in-situ* ARPES spectra (hv = 88 eV). As seen in Fig. 1(d), the band structures of LSMO x = 0.4 consist of several highly dispersive O 2p derived bands at the binding energies of 2.3 - 6 eV, almost dispersionless Mn 3d bands at 2.0 eV, and an Mn $3de_{g}$ derived electron pocket centered at the Γ point. ^s We find that the energy positions of these bands monotonically shift toward higher binding energy with decreasing hole concentration in a rigid-band manner, whereas the electron pocket which is clearly observed in ferromagnetic metal LSMO x = 0.4 films gradually smears out with decreasing x, and almost disappears at ferromagnetic insulator LSMO x = 0.1 (Fig. 1(a)). These results suggest that the pseudogap or gap formation due to the spectral weight transfer from the near- E_{F} region dominates the changes in electronic structure near E_F of LSMO thin films with x.

References

 M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70 1039 (1998) and references therein.

[2] K. Horiba et al., Rev. Sci. Instrum, 74, 3406 (2003).

*chikamatsu@sr.t.u-tokyo.ac.jp

Figure 1: The band structure of LSMO (a) x = 0.1, (b) x = 0.2, (c) x = 0.3, (d) x = 0.4 along the Γ -X direction determined by *in-situ* ARPES measurements (hv = 88 eV). Dark parts correspond to the energy bands.