# Polarization dependence of soft-x-ray Raman scattering of Ti<sub>2</sub>O<sub>3</sub>

Yasuhisa TEZUKA<sup>1\*</sup>, Takahiro MAEDA<sup>1</sup>, Yoshihisa HARADA<sup>2</sup>, Tomoyuki TAKEUCHI<sup>2</sup>,

Hitoshi OSAWA<sup>3</sup>, Shik SHIN<sup>2,3</sup>, and Nobuo NAKAJIMA<sup>4</sup>

<sup>1</sup> Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan

<sup>2</sup> RIKEN Harima Institute, 1-1-1 Koto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan

<sup>3</sup> I SSP, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8581, Japan

<sup>4</sup>Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima 739-8526, Japan

### **Introduction**

 $Ti_2O_3$  is known to be the typical MH type semiconductors that have narrow band gap ( $E_{gap} < 0.1 \text{ eV}$ ) in the insulator phase, which has one 3*d* electron nominally. It is known that the Ti 3*d* components are strongly mixed in the O 2*p* state [1]. Early TM compounds including Ti compounds have attracted the interest of researchers because of their strong hybridization energies. Many body effects are observed in these compounds [2-4].

#### **Experimental**

SXE spectra were obtained at beamline BL-2C in Photon Factory, KEK. A soft X-ray monochromator consisting of a Rowland type grazing-incidence monochromator with a 5-m spherical grating (1200 lines/mm) [5] was used. The energy resolution of SXE spectroscopy (SXES) and XAS measurements was about 0.4 and 0.1 eV at 450 eV, respectively.

Powdered Ti<sub>2</sub>O<sub>3</sub> was measured in this experiment. Ti<sub>2</sub>O<sub>3</sub> has a corundum structure with a trigonal Bravais lattice. The structure includes the TiO<sub>6</sub> octahedron. In  $O_h$  symmetry, the 3*d* state is split into a lower t<sub>2g</sub> and a higher e<sub>g</sub> state by a crystal field. The TiO<sub>6</sub> cluster in the corundum structure is distorted. Therefore, the t<sub>2g</sub> state is split further into a<sub>1g</sub> and e<sub>g</sub> states.

## **Results and Discussions**

Figure 1 shows the XAS spectrum of Ti<sub>2</sub>O<sub>3</sub>. The XAS spectrum shows four main peaks and two satellites. The two lower peaks  $(L_{III})$  in the main structure originate from the excitation of Ti  $2p_{3/2}$  electrons, while the two higher peaks  $(L_{II})$  originate from the excitation of Ti  $2p_{1/2}$  electrons. Each structure is split into two peaks by the crystal field. The satellites are assigned to the CT satellite.

Figure 2 shows the polarization dependence of resonant Raman spectra of Ti<sub>2</sub>O<sub>3</sub>, which are plotted against the energy shift from elastic scattering energy. Numbers beside the spectra correspond to the numbers in Fig.1. Vertical bars indicate Ti  $3d \rightarrow 2p_{3/2}$  fluorescence. The lower energy peak corresponds to the Ti 3d state just below the Fermi energy, while the higher energy peak corresponds to the Ti 3d state mixed with the O 2p state.

The spectra observed in a polarized configuration show the elastic peak at 0 eV, while the spectra in depolarized configuration do not show the elastic peak. The peak near 0 eV in the depolarized spectrum 4 is not elastic peak, but a fluorescence peak, since it has finite energy shift from 0 eV.

On the other hand, two Raman peaks are observed at about 1.0 and 3.0 eV, indicated by dotted lines in Fig. 2. These peaks are thought to originate in the *d*-*d* excitation. Since the  $t_{2g}$  state is split into  $a_{1g}$  and  $e_g$  states in a trigonal symmetry, several *d*-*d* excitations would be possible.

These results are in contrast to that of  $TiO_2$  [4], in which several CT excitations are observed at 5-13 eV but no *d-d* excitation is observed. The 3*d* electron just below the Fermi energy considerably affects the resonant SXE spectra.



Fig.1 Ti 2p X-ray absorption spectrum of Ti<sub>2</sub>O<sub>3</sub>. Vertical bars indicate excitation energies in the SXES measurements.



Fig.2 Polarization dependence of Raman spectra of  $\text{Ti}_2\text{O}_3$ . The vertical dotted line at 0 eV indicates the Fermi energy and the others indicate the Raman peaks. Vertical bars indicate Ti  $3d \rightarrow 2p$  fluorescence.

## **References**

[1] K. Okada et al., J. Electron Spectrosc. Relat. Phenom., 62, 131 (1993).

[2] T. Uozumi, et al., J. Phys. Soc. Jpn., 65, 1150 (1996).

- [3] Y. Tezuka et al., J. Phys. Soc. Jpn. 65, 312 (1996).
- [4] Y. Harada et al., Phys. Rev. B 61, 12854 (2000).
- [5] Y. Harada et al., J. Synchrotron Rad. (1998). 5, 1013.
- \* tezuka@si.hirosaki-u.ac.jp