Electronic structure of Ga$_{1-x}$Cr$_x$As studied by in-situ photoemission spectroscopy

Ken KANAI, Jun OKABAYASHI, Kanta ONO1, Masaharu OSHIMA
The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
1KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction
Since the first reports of ferromagnetism in Mn-doped III-V semiconductors synthesized the “spinelectronics” research field using molecular-beam epitaxy (MBE), diluted magnetic semiconductors (DMS) have become key materials for the functional device application combining magnetic and semiconducting properties[1]. The Mn doping into GaAs leads to carrier-induced ferromagnetism because hole carriers introduced into the Mn ions although its microscopic mechanism has been controversial until now. The Curie temperature (T_C) in Ga$_{1-x}$Mn$_x$As has not exceeded 150 K so far due to the solubility limit of Mn and the carrier self-compensation[2]. To overcome these problems in Ga$_{1-x}$Mn$_x$As, the investigations for the chemical trends in III-V based DMS can bring us a new information about a functional material design. First-principle band-structure calculation predicts that the Cr doping into GaAs stabilizes the ferromagnetic states because the Cr 3d states are located near the Fermi level (E_F)[3]. The Cr doping into GaAs has a high potential to design the high-T_C ferromagnetic semiconductors. We have fabricated the Ga$_{1-x}$Cr$_x$As by MBE and discussed the electronic structure by the Cr doping into GaAs using in-situ photoemission spectroscopy. We focused on the transition-metal 3d states in Ga$_{1-x}$Cr$_x$As comparing with those in Ga$_{1-x}$Mn$_x$As[4].

Experimental
Ga$_{1-x}$Cr$_x$As samples were grown by low-temperature (LT) -MBE methods on GaAs (001) substrates. The 100-nm Ga$_{1-x}$Cr$_x$As layer was grown on the GaAs buffer layer at 200°C and the evaporation temperature of Cr ions was changed from 1140°C to 1240°C to fabricate the different Cr-concentration samples. The MBE system used in this study was connected to the synchrotron-radiation photoemission spectroscopy chamber at BL-1C of Photon Factory, High-Energy Accelerator Research Organization (KEK). The samples grown by MBE were transferred into the photoemission chamber without breaking the ultrahigh vacuum. In-situ photoemission spectroscopy was performed at room temperature.

Results and discussion
Figure 1 shows the valence-band spectra of Ga$_{1-x}$Cr$_x$As depending on the Cr concentration. As references, spectrum for GaAs is also shown. Valence-band spectra taken at photon energy $h\nu = 60$ eV show new states near E_F derived from the Cr 3d states as shown by arrow in Fig. 1. One can see that the intensity in new states depends on the Cr concentration. These states appear by the hybridization between Cr 3d and As 4p states. Peak positions are shifted toward lower binding energy with increasing the Cr concentration, suggesting the Fermi-level shifts due to the hole doping. The Cr substitution into Ga site will derive the hole doping by $\text{Cr}^{3+} \rightarrow \text{Cr}^{2+} + \text{hole}$ through the hybridization between Cr 3d and As 4p states. Spectra for higher Cr concentrations than 11% doping show a clear Fermi edge. For Ga$_{1-x}$Mn$_x$As, the Mn 3d states are located around ~4 eV and $p-d$ exchange interaction through the hybridization Mn 3d and As 4p states is important for the ferromagnetic ordering[4]. On the other hand, the new states appearing by the Cr doping may be responsible for the double-exchange mechanism for the ferromagnetism.

References

![Figure 1: Valence-band photoemission spectra of Ga$_{1-x}$Cr$_x$As depending on the Cr concentration.](kanai@sr.t.u-tokyo.ac.jp)