Magnetoelectric X-ray Scattering in GaFeO$_3$ and Fe$_3$O$_4$

Masakazu MATSUBARA1, Jong-Hoon JUNG2, Yoshiaki SHIMADA1, Taka-hisa ARIMA2, Hiroshi SAWA1, and Yoshinori TOKURA1

1Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
2ERATO-JST, c/o AIST, Tsukuba, Ibaraki 305-8562, Japan
3KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction
The linear magnetoelectric (ME) effect can be observed in magnetically ordered crystals whose magnetic group does not contain the space inversion operation, i.e., where time reversal R and space inversion I operations are broken simultaneously. In optical or x-ray region, the novel nonreciprocal magneto-optical phenomena, termed magnetochiral or optical ME effect, are expected to show up in such a crystal as characterized by a different optical response (absorption or refraction) depending on light propagation direction k. Spectroscopy of this nonreciprocal effect is important to clarify the microscopic mechanism of the ME effect which is attracting renewed interest also from the viewpoint of the application to spin-electronics.

In this study, we have investigated resonant ME x-ray scattering (MEXS) in a polar ferrimagnet GaFeO$_3$ and a spinel-type ferrimagnet Fe$_3$O$_4$. Here, we propose that present element-specific resonant MEXS would be a unique probe of the magnetic state with broken centrosymmetry.

Experimental
The samples used in this work were GaFeO$_3$ and Fe$_3$O$_4$ single crystals grown by a floating-zone method. The measurements of magnetic x-ray scattering were carried out at BL-1A and 16A2. An incident beam was injected on the (010) and (111) surface for GaFeO$_3$ and Fe$_3$O$_4$, respectively, and a modulated magnetic field was applied perpendicular to the incident beam, namely in Voigt configuration. The modulated magnetic and/or ME scattering intensity $\Delta I(f)$ was recorded as the ratio of spin-dependent to spin-independent scattering intensity $\Delta I(f)/I$ with a lock-in amplifier.

Results and Discussions
First, we describe the results in a polar ferrimagnet GaFeO$_3$. For the (020) and (040) Bragg reflections, we have observed a change in the scattering intensity with reversal of the magnetization direction near the Fe K pre-edge [1]. In Fig. 1, we show the magnetic-field modulation spectra $\Delta I(f)/I$ for the (020) and (040) Bragg reflections, respectively. One can see a large energy-independent component for (020) and resonant peaks for both reflections. The energy-independent component is assigned to the well-known conventional magnetic x-ray scattering (MXS) from the viewpoint of the spin structure of GaFeO$_3$. On the other hand, the resonant signal near the pre-edge is possibly related to MEXS, which is sensitive not only to the magnetism but also to the breaking of the inversion symmetry [2]. Actually, we certainly observed, that the MEXS signal is reversed in sign when the sample (spontaneous polarization) was reversed, which evidences our expectation (Fig. 1).

Figure 1: Magnetic field modulation spectra of Bragg reflections at 50 K for (020) (open circles), (040) (solid circles), and (040) (open squares). The absorption spectrum around the Fe K-absorption edge of GaFeO$_3$ is also shown by a solid line.

Next, we describe the results of a spinel-type ferrimagnet Fe$_3$O$_4$. Although I symmetry is globally restored, it is locally broken at the tetrahedral A site. It is possible to detect the local ME scattering at noncentrosymmetric site as the nonreciprocal effect, due to the possibility of adjusting phase factors, even in systems where the I symmetry is globally restored. At the (222) Bragg reflection with a specific structure factor, in fact, resonant magnetic component was observed around the pre-edge region of Fe K-absorption. As compared with the (333) and (444) Bragg reflections, we deduced that the resonant structure observed at the (222) Bragg reflection is due to MEXS at the spinel A site with locally broken inversion symmetry (T_d).

References

* m-matsubara@aist.go.jp