Geometrical frustration of quadrupolar moments in DyB₄

Takeshi MATSUMURA*, Daisuke OKUYAMA, Hironori NAKAO, Youichi MURAKAMI Department of Physics, Tohoku University, Sendai 980-8578, Japan

Introduction

A tetragonal rare-earth compound DyB_4 has been attracting growing interest as a system where the quadrupolar moment of Dy might be fluctuating because of the geometrical frustration. The lattice of Dy is illustrated in Fig. 1; note that this is equivalent to the Shastry-Sutherland lattice. The Dy lattice here can be regarded as a combination of square and triangular connections because the nearest neighbor (orange) and the next nearest neighbor (pink) connections have almost the same distance.

 DyB_4 interestingly exhibits two phase transitons at $T_{_{N1}}=20.3$ K and at $T_{_{N2}}=12.7$ K. It is established by neutron powder diffraction that an antiferromagnetic order occurs at $T_{_{N1}}$ with magnetic moments align along the c-axis and propagate along the [100] direction. Also shown in Fig. 1 is this c-axis magnetic moment. What is intriguing is that the entropy of Rln2 still remain and that the elastic softening and absorption are enhanced for $T_{_{N2}} < T < T_{_{N1}}$. These results indicate that the quadrupolar degeneracy is somehow not lifted even below $T_{_{N1}}$.

Results, Analysis, and Discussion

Resonant x-ray scattering experiment has been performed at BL16A2 and the (1 0 0) forbidden reflection has been investigated in detail. Only the σ - π ' scattering was observed at any azimuthal angle. Azimuthal angle is defined to be zero when the c-axis is parallel to the scattering plane. Figure 2 shows the temperature dependence of the integrated intensity of the rocking scan at the E1 resonance and its half width at half maximum.

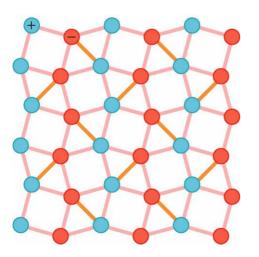


Figure 1: Lattice of Dy within the ab-plane of DyB4. Blue and red circle represent Dy with up and down spins along the c-axis, respectively.

At $\Psi=0^{\circ}$, the intensity rises up steeply below $T_{_{NI}}$ and HWHM is very small though it slightly decreases with decreasing temperature. Contrastingly, at $\Psi=90^{\circ}$, the intensity exhibits a sudden increase below TN2 and HWHM is clealy broader than the resolution limit; it also exhibits a sudden drop below $T_{_{NP}}$.

A simple magnetic structure assuming only the c-axis component as shown in Fig. 1 cannot explain the nonzero intensity at Ψ =90°. It is necessary to introduce in-plane magnetic and quadrupolar components. A detailed analysis shows that the structure factor at $\Psi=0^{\circ}$ is proportional to $\langle Jz \rangle$, whereas at $\Psi=90^{\circ}$ it is proportional to <Jx> and <Ozx>. In view of the results of ultrasonic measurements, it is likely that the quadrupolar degree of freedom plays an important role. Broad peak width at Ψ =90° indicate that the <Ozx> quadrupolar moment has short range correlation because of the geometrical frustration, whereas the <Jz> magnetic moment observed at $\Psi=0^{\circ}$ has a long range order. Elastic softening indicate that there is no static order of <Ozx>; but, it is possible to observe the short range correlation by RXS because the time scale of observation is very short. These results suggest that the <Ozx> moment is fluctuating.

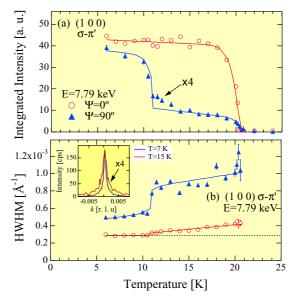


Figure 2: (top) Temperature dependence of the integrated intensity at $\Psi=0^{\circ}$ and 90° . (bottom) Half width at half maximum of the rocking scan. Inset shows the peak profile at $\Psi=90^{\circ}$. Dotted line is the resolution limit.

References

- [1] D. Okuyama et al., to be submitted.
- * tmatsu@iiyo.phys.tohoku.ac.jp