Crystal structure of geometrically frustrated spinel $\mathrm{AlV}_{2} \mathrm{O}_{4}$

Hiroki ISHIBASHI ${ }^{1 *}$, Yoichi HORIBE ${ }^{1}$, Masao SHINGU ${ }^{2}$, Kosuke KURUSHIMA ${ }^{1}$, Shigeo MORI ${ }^{1,3}$, Takuro KATSUFUJI ${ }^{2,3}$
${ }^{1}$ 'Osaka Prefecture Univ., Sakai, Osaka 599-8531, Japan
${ }^{2}$ Waseda Univ., Tokyo 169-5551, Japan
${ }^{3}$ PRESTO, Japan Science and Technology Corporation, Saitama 332-0012, Japan

Introduction

Spinel compound $\mathrm{AlV}_{2} \mathrm{O}_{4}$ is known to show chargeordering (CO) behavior below $T_{\text {со }} \sim 700 \mathrm{~K}$ [1]. Upon the phase transition at $T_{\text {co }}$, the electrical resistivity sharply increases and the magnetic susceptibility is suppressed. The CO state has a rhombohedrally distorted spinel structure. A structural model reported previously is that the V ions on the Kagome lattices and those on the triangular lattices with different valences stack alternately along the [111] direction. However, both x-ray powder diffraction and electron diffraction (ED) experiments show the presence of the superlattice structure with the wave vector $q=1 / 2[111]$, which was not considered in the proposed model. In this study, we investigate the crystal structure by high resolution x-ray powder diffraction measurement to clarify the CO state in $\mathrm{AlV}_{2} \mathrm{O}_{4}$.

Experimental

The sample of $\mathrm{AlV}_{2} \mathrm{O}_{4}$ was prepared by the same way as the previous report [1]. The powder diffraction experiment at room temperature was carried out using multiple-detector system (MDS) installed at BL-4B station. A flat $\mathrm{Ge}(111)$ analyzer was used to improve the angular resolution. The diffraction data of $\mathrm{AlV}_{2} \mathrm{O}_{4}$ were collected at a step interval of 0.004° in 2θ and a counting time of 5 sec at each step. The asymmetric 2θ scan mode was used at a fixed incident angle of $\alpha=7^{\circ}$. The wavelength of incident beam was $\lambda=1.2060 \AA$.

Results and Discussion

Figure 1 shows the powder pattern of $\mathrm{AlV}_{2} \mathrm{O}_{4}$ at room temperature. First, the lattice constants are determined from the peak position of each reflection and estimated as $a \sim 5.75 \AA$ and $c \sim 28.85 \AA$ with a rhombohedral symmetry (hexagonal axis choice). Based on this information and various electron diffraction patterns, we have constructed several structural models and the structural refinement for each model was carried out by Rietveld method. The structural parameters for the best fitting model are shown in Table 1. The overall quality of the fitting is fairly good. Further, the refined structural model is consistent with the high resolution electron microscope images [2].

Here, we discuss the CO state of $\mathrm{AlV}_{2} \mathrm{O}_{4}$ based on the present structural model. There are three independent V sites, two V atoms $\left(\mathrm{V}_{1}\right.$ and $\left.\mathrm{V}_{2}\right)$ on the triangular lattice and one V atom $\left(\mathrm{V}_{3}\right)$ on the Kagome lattice. On the other hand,
there are four kinds of $\mathrm{V}-\mathrm{V}$ bond length. Two of them are shorter $\left(\mathrm{V}_{3}-\mathrm{V}_{3}: 2.610 \AA, \mathrm{~V}_{2}-\mathrm{V}_{3}: 2.809 \AA\right)$ and the others are longer $\left(\mathrm{V}_{3}-\mathrm{V}_{3}: 3.141 \AA, \mathrm{~V}_{2}-\mathrm{V}_{3}: 3.039 \AA\right)$. The shorter $\mathrm{V}_{3}-\mathrm{V}_{3}$ bonds form "trimers" and all the V_{2} atoms are sandwiched by two V_{3} trimers. As a result, seven V atoms form a V cluster, i.e., "heptamer". The stabilization of the V heptamer is consistent with the physical properties and theoretical consideration [2].

Fig. 1.Portion of the synchrotron x-ray powder diffraction pattern (black points) and the Rietveld fit (red line).

Table 1. Structural parameter of $\mathrm{AlV}_{2} \mathrm{O}_{4}$

Space group $R-3 m$$a=5.75148(3) \AA, c=28.85407(14) \AA$				
atom	site x	y	z	$B\left(\AA^{2}\right)$
Al_{1}	6 c 0	0	0.18298(3)	$0.146(12)$
Al_{2}	$6 c 0$	0	0.30931(3)	0.103(11)
V_{1}	$3 a 0$	0	0	-
V_{2}	$3 b 0$	0	1/2	-
V_{3}	$18 h$ 0.84873(2)) $=1-x$	0.41786(1)	-
O_{1}	6 c 0	0	$0.12132(6)$	0.259 (7)
O_{2}	$6 c 0$	0	$0.37045(6)$	$=B\left(\mathrm{O}_{1}\right)$
O_{3}	$18 h$ 0.83153(8)) $=1-x$	0.53921(4)	$=B\left(\mathrm{O}_{1}\right)$
O_{4}	$18 h$ 0.82972(8)) $=1-x$	0.29034(4)	$=B\left(\mathrm{O}_{1}\right)$
	$\beta_{11} \quad \beta_{22}$	β_{33}	β_{12}	$\beta_{13} \quad \beta_{23}$
$\mathrm{V}_{1} 0$	$0.0014(2)=\beta_{11} \quad 0$.	$0.000086(8)$	$=\beta_{11} / 2$	$0 \quad 0$
$\mathrm{V}_{2} 0$	$0.0007(2)=\beta_{11} 0$.	0.00176(2)	$=\beta_{11} / 2$	$0 \quad 0$
$\mathrm{V}_{3} 0$	$0.00231(7)=\beta_{11} 0$.	$0.000059(2)$	0.00047(8)	$0.00002(1)=-\beta_{13}$
	${ }_{\mathrm{P}}=7.82 \%, R_{\mathrm{B}}=2.1$	$.10 \%, S=1$	1.605	

References

[1] K. Matsuno et al., J. Phys. Soc. Jpn 70, 1456 (2001).
[2] Y. Horibe et al., submitted.
*hiroki@p.s.osakafu-u.ac.jp

