Incommensurate Structural Modulation of the Incommensurate Organic Superconductor (MDT-TS)(AuI,)_{0.441}

Tadashi KAWAMOTO^{1*}, Hisataka ENDO¹, Yoshimasa BANDO¹, Takehiko MORI¹, Toru KAKIUCHI², Yusuke WAKABAYASHI³, Hiroshi SAWA³, Kazuo TAKIMIYA⁴, Tetsuo OTSUBO⁴ ¹Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan ²Department of Materials Structure Science, The Graduate University of Advanced Studies, Japan ³Institute of Materials Structure Science, High Energy of Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan

⁴Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan

Introduction

In organic superconductors, the ratios of the donor molecules to anions are represented by an integer (typically 2:1) [1]. By contrast, the MDT-TSF (methylenedithio-tetraselenafulvalene) series salts are incommensurate ambient pressure organic superconductors and the charge transfer degrees deviate from 0.5 [2]. Moreover, (MDT-TSF)(AuI₂)_{0.436} has shown the characteristic Fermi surface reconstruction by an incommensurate anion potential [3]. (MDT-TS)(AuI₂)_{0.441}, where MDT-TS is 5H-2-(1,3-diselenol-2-ylidene)-1,3,4,6tetrathiapentalene, shows a metal-insulator transition at $T_{\rm MI} = 50$ K in spite of the basically same crystal structure as those of the MDT-TSF superconductors [4]. The ground state of this salt changes from an "incommensurate antiferromagnetic insulating state" with $T_{\rm w} = 50$ K to a superconducting phase at 3.2 K under 10.5 kbar [4]. The present paper reports discovery of structural modulation of (MDT-TS)(AuI₂)_{0.441}.

Results and Discussion

Figure 1 shows the synchrotron radiation x-ray oscillation photograph at 290 K. This photograph clearly displays incommensurate layer lines. We distinguish the donor lattice and the anion lattice by indices h and h', respectively. There are clear satellite spots at $h \pm \xi$.

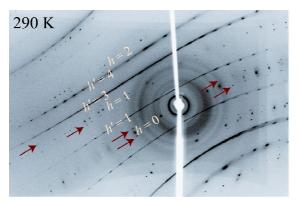


FIG. 1. X-ray oscillation photograph at 290 K.

The exact wave number of the satellite spot ($\xi 4 2$) is determined by a four-circle diffractometer and is found to be $\xi = 0.114(3)$. Although the obtained wave number is close to 1/9, we find that the satellite spot (1- $\xi 2 2$) overlaps with the h' = 2 line of the anion lattice; this indicates that the modulation periodicity is incommensurate with the donor stacking periodicity.

The energy spectra of the satellite reflections do not include the scattering factor of Au atoms, $E_{\rm abs} = 11.9212$ keV [5], but include that of Se atoms, $E_{\rm abs} = 12.6545$ keV [5], as shown in Fig. 2. This demonstrates that the structural modulation occurs in the donor lattice.

In summary, we have found the incommensurate structural modulation in the donor lattice of (MDT-TS)(AuI₂)_{0.441} with $q = 0.114(3)a^*$.

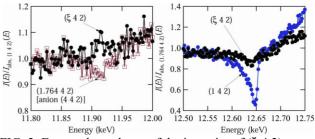


FIG. 2. Energy dependence of the intensity of $(\xi 4 2)$.

References

[1] T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, 2nd Ed. (Springer, Berlin, 1998).

[2] K. Takimiya et al., Angew. Chem. Int. Ed. Engl. 40, 1122 (2001); Chem. Mater. 15, 3250 (2003); *ibid* 15, 1225 (2003); T. Kawamoto et al., Phys. Rev. B 65, 140508(R) (2002); *ibid* 71, 172503 (2005); J. Phys. Soc. Jpn. 74, 1529 (2005).

[3] T. Kawamoto et al., Phys. Rev. B 67, 020508(R) (2003); Eur. Phys. J. B 36, 161 (2003).

[4] K. Takimiya et al., Chem. Mater. 16, 5120 (2004); T. Kawamoto et al., Phys. Rev. B 71, 052501 (2005).

[5] J. A. Bearden, Rev. Mod. Phys. 39, 78 (1967).

* kawamoto@o.cc.titech.ac.jp