Determination of spin orientations of five independent Fe sites by resonant X-ray magnetic scattering

Takahiro AKI¹, Syoichi SAKURAI¹, Norio SHIMIZU¹, Koichi OHKUBO¹, Kouji YAMAWAKI¹, Takayasu HANASHIMA¹, Takeharu MORI², Takeshi TOYODA³, Satoshi SASAKI^{*1} ¹ Materials and Structures Lab., Tokyo Inst. Tech., Nagatsuta, Yokohama 226-0803, Japan

² KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

³ Industrial Research Institute of Ishikawa, Kuratsuki, Kanazawa 920-8203, Japan

Introduction

Resonant X-ray magnetic scattering (RXMS) has attracted much interest as a useful tool to determine the magnetic structures associated with specific electronic states such as 3d-4p interactions. The diffraction experiment in ferromagnetic Ni was first made at the Ni K edge [1]. The resonant enhancement in the Bragg intensity can be predicted between charge and magnetic scatterings at the L edge of the rare-earth systems [2]. The large effect makes it possible for a tiny single-crystal to give simultaneously a complete determination of the crystal structure and spin arrangement.

In this study, M-type $BaFe_{12}O_{19}$ has been examined to confirm the potential ability in magnetic structure determinations, because there are five independent Fe sites in a hexagonal-ferrite structure, which are tetrahedral $4f_1$, bipyramidal 2*b*, and octahedral 2*a*, $4f_2$ and 12k sites.

Experimental

Preliminary diffraction experiments were carried out at the BL-10A. RXMS experiments were performed at the Fe K absorption edge at BL-3A. The horizontally polarized white X-rays were monochromatized by the Si(111) double-crystal monochromator. The difference in the Bragg intensities for right- and left-circularly polarized X-rays was measured. The incident beam was guided into a synthetic single crystal of (001) diamond with a thickness of 0.492 mm in order to produce circularly polarized X-rays. A standard four-circle geometry was used around the Fe K edge. The incident X-ray intensity was monitored with an ionization The RXMS intensity was defined as an chamber. asymmetry ratio of $R = (I^+ - I^-)/(I^+ + I^-)$, where I^+ and I^- are the integrated Bragg intensities related to the right- and left-circularly polarization.

Diffraction profiles for more than 30 reflections of a single crystal of 0.07 mm in diameter were measured with right- and left-circularly polarized X-rays at room temperature, which were produced passing through the phase retarder.

Results and discussion

X-ray magnetic circular dichroism (XMCD) spectra for the same specimen were used to select some wavelengths at the Fe *K*-absorption edge. The experimental resonant magnetic scattering factors were estimated from the K-K transformation of XMCD spectra and the least-squares calculation of observed integrated intensities. The estimation of magnetic scattering factors was made in the structure-refinement procedure. The residuals of $\Sigma (|R_{obs}| - |R_{calc}|)^2$ were minimized to fit the best parameters, where R_{obs} and R_{calc} are observed and calculated ratios. The variation of residual factors is plotted in Fig. 1 as a function of $f^{""}$ values.

The observed asymmetry ratios were in agreement with those made for the most appropriate spin-orientation. The schematic projection of the final crystal structure is shown in Fig. 2, indicating the magnetic moments.

References

K. Namikawa et al., J. Phys. Soc. Jpn. 54, 4099 (1985).
P. Carra et al., Phys. Rev. B 40, 7324 (1989).

* sasaki@n.cc.titech.ac.jp