Detectors of stacked avalanche photodiodes for nuclear resonant scattering experiments

Shunji KISHIMOTO and Rie HARUKI
KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction
A silicon avalanche photodiode (Si-APD) detector is now a standard for the synchrotron radiation experiments on nuclear resonant scattering, since it was developed in 1991 [1]. A stacked Si-APD detector was provided for X-ray diffraction experiments at PF more than 7 years ago [2], but was not used for the nuclear resonance scattering in PF. We have recently developed a couple of stacked Si-APD detectors for the nuclear resonant scattering experiments carried out at beamline NE3A of the PF-AR ring. They were tested for time resolution, efficiency, and time spectrum by using 14.4-keV X-rays.

Detectors and performance test

Si-APDs
Three types of Si-APD were used for each detector. :
A. 3mm in diameter, 30µm thick (Hamamatsu SPL3158).
B. 3mm in diameter, 130µm thick (Hamamatsu SPL2207).
C. 3×5mm, 130µm thick (Hamamatsu SPL3160).

Set-up
In Fig. 1, our set-up for the detector test is schematically shown. Intensity of the incident beam was monitored during a measuring period with a PIN photodiode of transmission type. An absolute intensity of the incident beam was obtained by using a NaI(Tl) scintillation counter and zirconium metal filters. Outputs of each APD channels were independently processed with an amplifier, a discriminator and a scaler. Energy spectra were measured per channel with a charge-sensitive preamplifier to check the APD performance and to get efficiency. Mössbauer time spectra for 57Fe foil were recorded to obtain time resolution using a time-to-amplitude converter. We also obtained a dead time from a measured time spectrum, which is defined as a time when a signal can again be recorded in time spectrum after a prompt peak caused by electron scattering.

Experimental results
The results are shown in Table 1. Figure 2 indicates one of time spectra, measured with the detector of Type A. The error of the efficiency was ±0.3%. The time resolution of the prompt peak and the dead time were measured at rate of >108 s$^{-1}$. The values of time resolution were somewhat modified from those measured at a low rate due to pulse pile-up of the huge prompt pulses, although their errors were less than ±0.1 ns.

<table>
<thead>
<tr>
<th>Type</th>
<th>Efficiency (%)</th>
<th>Time resolution (FWHM, ns)</th>
<th>Dead time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>18.8</td>
<td>0.36</td>
<td>2.6</td>
</tr>
<tr>
<td>B</td>
<td>78.2</td>
<td>0.43</td>
<td>13.6</td>
</tr>
<tr>
<td>C</td>
<td>79.5</td>
<td>0.55</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Fig. 2: Time spectrum for 57Fe foil, measured with Type A

References

*Present address: Research and Development Center for Higher education, Kyushu Univ., Ropponmatsu, Fukuoka 810-8560.
syunji.kishimoto@kek.jp