XAFS analysis of UO₂(NO₃)_x(TcO₄)_{2-x}(TBP)₂

Shinichi SUZUKI^{*1}, Tsuyoshi YAITA², Yoshihiro OKAMOTO², Hideaki SHIWAKU² ¹JAEA, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan ² JAEA, Kouto, Sayo-cho, Sayo-gun Hyogo 679-5198, Japan

Introduction

In the nuclear fuel re-processing, technetium exists as per-technetate ion. The per-technetate ion is comparatively large tetrahedral structure which consists of four oxygen, while the effective charge is comparatively smaller than other anion. Therefore, it is extracted in ion pair as a pertechnetic acid by tri-butyl phosphate(TBP) easily. Furthermore, the per-technetate ion is co-extracted with counters ions such as UO₂²⁺, Pu⁴⁺ and Zr⁴⁺ with TBP. However, there is few reported about structural analysis of these co-extracted complexes until now. In this study, the structural analysis of the coextracted complexes were performed about Tc-complexes $UO_2(NO_3)_x(TcO_4)_{2-x}(TBP)_2$ [1].

Experimental

The technetium samples were made as following procedure. 1 ml of n-dodecane as an organic solvent containing 30 % tri-butyl phosphate was shaken with the same volume of the various nitric acid containing 40 mM of $UO_2^{2^+}$ with about 0.7 M of TcO_4^- . After centrifugation, 0.45 ml of the organic solution was separated to use as a sample. 0.45 ml of Tc-U-TBP complex solution was enclosed in polyethylene tube. The XAFS measurement carried out at beam line BL27B. The absorption edges were 17.16 keV for U(L_{III}), and 21.05 keV for Tc(K).

Results and Discussion

The radial structural functions of Tc-K XAFS for Tc-U-TBP complex in dodecane prepared by the solvent extraction method is shown in Fig.1. The first peak in the sample is attributed to the four oxygen atoms of TcO_4^- ion. The bond distance of Tc-O, i.e. about 1.74 Å, agrees well with the previous data [2]. Generally, technetium is further extracted in the presence of U(VI) ion in the solvent extraction with TBP. Therefore, technetium is regarded to behave as a counter ion in the extraction of uranium. Accordingly, the peaks around 3.2 Å (in RSF) can be attributed to the Tc-U interaction. The curve fitting for the UO₂-TcO₄-NO₃-TBP complexes of Tc-K XAFS is also shown in Fig.1. The bond distance of Tc-O and Tc-U are about 1.74 Å and 3.59 Å, respectively. These structural analysis data suggest that TcO₄⁻ ion coordinates to uranium with bidentate fashion instead of a nitrate ion in the Tc co-extraction system. The comparison of radial structural functions of U-L_{III} XAFS for $UO_2(TcO_4)(NO_3)(TBP)_2$, UO₂(NO₃)₂(TBP)₂ and UO₂(NO₃)₂(H₂O)₂ are shown in Fig.2. The U-O(O-Tc) and U-Tc of UO₂(NO₃)(TcO₄)(TBP)₂ are also confirmed, and a significant evidence of TcO_4^- for direct coordination to $UO_2^{2^+}$. The distance of U-Tc is 3.60 Å, which well agrees with the Tc-K XAFS result. The interaction of uranium are mainly 5, U=O_{axial}, U-O_{eq1} (O=P), U-O_{eq2}

(O2-NO), U-O_{eq3} (O-Tc), and U-Tc. The bond distance of the U-O_{eq3} (O-Tc): 2.97 Å is longer than the U-O_{eq2} (O2-NO): 2.51 Å and U-O_{eq1} (O=P): 2.31 Å. Therefore, TcO₄ would be weaker interaction than the other oxygen.

Fig.1. The radial structural functions and the curve fitting of Tc K-EXAFS spectra on the basis of UO_2 -TcO₄-NO₃-TBP model.

* The N, R, σ^2 present the coordination number, bond distance, and debye-waller factor, respectively.

**The phase shifts were not corrected.

Fig.2. The comparison of radial structural functions of Tc-ligand complexes.

 $1 : UO_2(NO_3)(TcO_4)(TBP)_2, 2 : UO_2(NO_3)_2(TBP)_2,$

$$3 : UO_{2}(NO_{2})_{2}(H_{2}O)_{3}$$

*The phase shifts were not corrected.

References

[1] S.Suzuki et al., Physica Pcripta, T115, 306(2005).

[2] P.G.Allen et al., Radiochimca. Acta, 76,77(1997)

*suzuki.shinichi@jaea.go.jp