Behavior of trivalent metal ion in LiCl-KCl eutectic melt

Yoshihiro OKAMOTO^{*1,2}, Tsuyoshi YAITA¹, Hideaki SHIWAKU¹, Shinichi SUZUKI², Paul A. MADDEN³, Noriko USAMI⁴, Katsumi KOBAYASHI⁴ ¹Japan Atomic Energy Agency, Sayo-cho, Hyogo 679-5148, Japan ²Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195, Japan ³University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK ⁴KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction

In the pyrochemial reprocessing of spent nuclear fuels, a small amount of polyvalent metal ion like U^{3+} in LiCl-KCl eutectic melt is an important condition. In the present work, the local structure around trivalent ions; U^{3+} and Y^{3+} in LiCl-KCl eutectic melt was studied by using the high-temperature XAFS measurement and the molecular dynamics simulation.

Experimental

The XAFS measurements were performed at the BL-27B station in the KEK-PF. The U L₃-edge (E_0 =17.167keV) XAFS for 5%UCl₃-(LiCl-KCl eutectic) and the Y K-edge (E_0 =17.080keV)) XAFS for molten pure YCl₃ and 5%YCl₃-(eutectic LiCl-KCl) mixture were measured in the transmission method. The samples were sealed off in a quartz cell under reduced pressure. Details of the XAFS measurement and data processing of molten salts are described in ref.[1].

Simulation

The molecular dynamics simulation using polarizable ionic model(PIM) was performed to simulate XAFS functions of molten UCl₃ and YCl₃ systems[2]. The functions were obtained by averaging FEFF computations from position data of the MD simulation[3].

Fig.1 XAFS functions of molten (a)pure YCl_3 and (b) 5%YCl_3 in LiCl-KCl eutectic melt. (Solid : experimental, open circle : simulation)

]Results and discussions

Fig.1 shows XAFS functions of molten pure YCl₃ at 1023K and 5%YCl₃ in LiCl-KCl eutectic melt at 773K. In this system, very small changes in the nearest Y^{3+} -Cl⁻ coordination number and separation distance were observed by mixing with LiCl-KCl. Therefore no oscillation phase shift was observed in the XAFS function as shown in the Fig.1. Only a fluctuation factor such as Debye-Waller factor in the XAFS analysis was changed by the mixing. It is concluded that YCl₃ has (YCl₆)³⁻ octahedral coordination unit both in the pure melt and in the mixture melt.

Fig.2 shows XAFS function of molten 5%UCl₃ in LiCl-KCl eutectic at 823K. From the MD simulation optimized by the XAFS data, the nearest U^{3+} -Cl⁻ distance is 2.76Å and its coordination number is 6.5. They are smaller than 2.85Å and 8.0 in the pure melt[2]. The local structure of molten pure UCl₃ is different from that of YCl₃ melt. On the other hand, they have similarly (MCl₆)³⁻ coordination unit in the mixture with LiCl-KCl.

Fig.2 XAFS function of molten 5%UCl₃ in LiCl-KCl eutectic. (Solid : experimental, open circle : simulation)

References

[1]Y. Okamoto et al., Nucl. Inst. Meth. Phys. Res. A, **487** (2002)605.

[2]Y. Okamoto et al., J. Nucl.Mater., 344(2005)109.

[3]Y. Okamoto, Nucl. Inst. Meth. Phys. Res. A, **487** (2002)605.

*okamoto.yoshihiro@jaea.go.jp