Characterization of micro and mesoporous Fe(III) materials utilizing organic template followed by carboxylates exchange

Yasuo Izumi,^{1,*} Dilshad Masih,¹ Ken-ichi Aika,¹ and Yoshimi Seida² ¹ Tokyo Institute of Technology, Nagatsuta 4259-G1-16, Midori-ku, Yokohama 226-8502 ² Institute of Research and Innovation, 1201 Takada, Kashiwa 277-0861

Introduction

Arsenic contamination in drinking water is serious worldwide environmental problem and recent regulation of the concentration is 10 ppb. Sorption method is most economic way to remove arsenic [1]. In this work, micro and mesoporous Fe^{III} materials were prepared utilizing organic template followed by smaller carboxylates (formate, acetate, and propionate) exchange. The transformation in the synthesis was characterized using Fe K-edge synchrotron XAFS.

Experimental section

50 ml of Fe^{II}Cl₂ was mixed with 10 ml of Na dodecylsulfate (0.07 M) followed by the addition of 10 ml of H₂O₂ (0.25 M). The solution was stirred for 1h and filtered. Obtained FeO_x(OH)_y composite was mixed with Na formate, acetate, or propionate (0.05 M for each) in ethanol. Obtained anion-exchanged FeO_x(OH)_y and ethanol-washed FeO_x(OH)_y in the absence of carbocylate was heated in N₂ gas flow [1]. Fe K-edge XAFS spectra were measured at beamline 12C and 10B in transmission mode at 20 – 290 K for FeO_x(OH)_y samples evacuated at 290 K and filled in a cell equipped with Kapton windows.

Results and discussion

The EXAFS spectra were measured for FeO_x(OH)_y composite, acetate-exchanged FeO_x(OH)_y, the one heated at 423 K, ethanol-washed FeO_x(OH)_y, and the one heated at 473 K. In all the Fourier-transform spectra [1], strong peak appeared at 1.5 - 1.6Å (phase shift uncorrected) due to the Fe-O bond. A medium peak at 2.7 - 2.8Å (phase

shift uncorrected) was clearly observed due the Fe•••Fe interaction.

For crystallines α -Fe₂O₂, α -FeO(OH), and γ -FeO(OH), the Fe-O bond distance was between 2.0305 - 2.034Å and the coordination number $N_{\text{Fe-O}}$ was 6 for the octahedral [FeO₆] coordination (Table 1). Obtained Fe-O bond distance $FeO_{y}(OH)_{y}$ composite and the derivative microporous Fe^{III} materials were between 2.043 - 2.088Å, slightly relaxed from those for standard compounds (Table 1). Associated N_{FeO} values fell within 4.6 – 6.0. Relatively smaller value (4.6) given for acetateexchanged $FeO_{y}(OH)_{y}$ may be because of less complete array of [FeO₆] units due to highly dispersed microporous nature and/or surface reduction by acetate or ethanol. The R_{FemFe} values also elongated (3.213 – 3.245Å) compared to the value for γ -FeO(OH) (3.066Å). These values were within the range of Fe•••Fe distance for edge-shared [FeO₆] units (2.97 – 3.28Å) [2]. Obtained $N_{\text{Fem}-\text{Fe}}$ values (1.8 - 3.1), suggesting highly dispersed, unsaturated nature of microporous Fe^{III} materials.

In summary, Fe K-edge analyses demonstrated that Fe^{III} materials studied consisted of edge-shared [FeO₆] octahedral units and the unsaturated nature.

References

Y. Izumi, D. Masih, K. Aika, Y. Seida, *Micropor: Mesopor:Mater.* 2006, in press.
Y. Izumi, D. Masih, K. Aika, Y. Seida, *J. Phys. Chem.*

B. **2005**, *109(8)*, 3227 – 3232.

* yizumi@chemenv.titech.ac.jp

			Fe-O			Fe•••Fe				
	k-range	<i>R</i> -range <i>N</i>	R	ΔE_0	$\Delta \sigma^2$	Ν	R	ΔE_0	$\Delta \sigma^2$	Goodness
Sample	for fit (Å-1)) for fit (Å)	(Å)	(eV)	$(Å^2)$		(Å)	(eV)	(Å^2)	of Fit
$FeO_x(OH)_y$ composite	3.7 - 12.0	1.11 - 3.13 6.0	2.070	-1.0	-0.0002	1.8	3.245	-1.0	0.0009	198
		(± 0.8)	(±0.013)	(±1.0)	(±0.0007)	(±0.2)	(±0.003)	(±0.5)	(±0.00	03)
Acetate-exchanged $FeO_x(OH)_y$	3.7 - 12.0	1.14 - 3.08 4.6	2.065	0.0	-0.0009	2.5	3.213	0.4	0.0022	141
		(±0.6)	(± 0.005)	(±1.1)	(± 0.0004)	(±0.4)	(±0.020)	(±3.4)	(±0.00	07)
Acetate-exchanged $FeO_x(OH)_y$	3.7 - 11.6	1.09 - 3.15 5.6	2.043	1.9	0.0010	3.1	3.241	-2.1	0.0049	264
heated at 423 K		(±0.5)	(±0.005)	(±0.9)	(±0.0002)	(±0.2)	(±0.013)	(±2.0)	(± 0.0003)	
Ethanol-washed $FeO_x(OH)_y$	3.7 - 11.9	1.11 - 3.10 5.1	2.088	-7.0	-0.0027	2.6	3.233	-0.3	0.0047	136
		(±1.6)	(±0.027)	(±3.5)	(±0.0031)	(±0.1)	(±0.011)	(±1.4)	(±0.00	05)
α -Fe ₂ O ₃ ^b		6	2.0305			7	3.1293			
α -FeO(OH) ^b		6	2.021			2	3.015,			
						6	3.390			
γ -FeO(OH) ^b		6	2.034			6	3.066			

Table 1: Best Fit Results of Fe K-edge EXAFS for FeO_x(OH)_v Composite and the Derivative Porous Materials^a

^{*a*} Values in parenthesis are estimated fit errors. ^{*b*} See the references 17 and 18 of ref. 1.