XAFS Study on $\mathrm{Mo} / \mathrm{SiO}_{2}$ and $\mathrm{Mo} / \mathrm{Al}_{2} \mathrm{O}_{3}$ Photocatalysts for the Selective Oxidation of CO with O_{2} in the Presence of H_{2} at 293 K

Takashi KAMEGAWA ${ }^{1}$, Masaya MATSUOKA* ${ }^{1}$, Masakazu ANPO ${ }^{1}$
${ }^{1}$ Department of Applied Chemistry, Graduate School of Engineering
Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531

Introduction

The preferential oxidation (PROX) of CO is one of the most straightforward method to reduce the CO contamination in H_{2}-rich gas. For now, noble metals supported catalysts generally have been tested and proposed for thermal PROX reaction. To the best of our knowledge, no attempt has been made to apply photocatalysis for the PROX reaction. Therefore, We have applied the $\mathrm{Mo} / \mathrm{SiO}_{2}$ and $\mathrm{Mo} / \mathrm{Al}_{2} \mathrm{O}_{3}$ photocatalysts for PROX reaction at 293 K .

Experimental

$\mathrm{Mo} / \mathrm{SiO}_{2}$ and $\mathrm{Mo} / \mathrm{Al}_{2} \mathrm{O}_{3}$ ($0.60 \mathrm{wt} \%$ molybdenum as metal) were prepared by an impregnation method of SiO_{2} (aerosil 300; Degussa) or $\mathrm{Al}_{2} \mathrm{O}_{3}$ (Aluminium Oxide C; Degussa), respectively, using an aqueous solution of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} 4 \mathrm{H}_{2} \mathrm{O}$. Photocatalytic reactions were carried out in a closed system using quartz reactor under UV irradiation at 293 K using a 100 W high-pressure mercury lamp.

XAFS spectra at Mo K-edge were measured in a transmission mode at room temperature at the BL-10B station. Curve fitting analysis of the EXAFS spectra was conducted on $k^{3} \chi(k)$ in k-space (k range $=3-12 \AA^{-1}$) with a REX2000J program (Rigaku).

Results and Discussion

The photocatalytic selective oxidation of CO into CO_{2} with O_{2} in the presence of H_{2} was investigated on $\mathrm{Mo} / \mathrm{SiO}_{2}$ and $\mathrm{Mo} / \mathrm{Al}_{2} \mathrm{O}_{3}$ under UV light irradiation at 293 K. After UV irradiation for 180 min , concentration of CO gas reached below the detection limit of GC analysis (less than 8 ppm), while the amount of H_{2} remained constant [1]. The CO conversion and selectivity reached $\sim 100 \%$ and 99%, respectively, on $\mathrm{Mo} / \mathrm{SiO}_{2}$, while no reaction proceeded on $\mathrm{Mo} / \mathrm{Al}_{2} \mathrm{O}_{3}$. Moreover, $\mathrm{Mo} / \mathrm{Al}_{2} \mathrm{O}_{3}$ exhibited quite weak photoluminescence as compared to that of $\mathrm{Mo} / \mathrm{SiO}_{2}$.

The XANES spectra of $\mathrm{Mo} / \mathrm{SiO}_{2}$ and $\mathrm{Mo} / \mathrm{Al}_{2} \mathrm{O}_{3}$ exhibit well-defined preedge peaks due to the $1 \mathrm{~s}-4 \mathrm{~d}$ transition of Mo atoms, indicating that Mo^{6+}-oxide species exist in a tetrahedral symmetry for both samples (Fig. 1 (A), (B)). The Fourier transforme of EXAFS spectra of $\mathrm{Mo} / \mathrm{SiO}_{2}$ and $\mathrm{Mo} / \mathrm{Al}_{2} \mathrm{O}_{3}$ showed peaks due to the existence of neighboring oxygen atoms (Mo-O) at around 0.8-2.0 \AA, while the additional peak due to the Mo-O-Mo bond was not observed between 3.0-4.0 \AA (Fig. 1 (a), (b)). These
results suggest that Mo^{6+}-oxide species are highly dispersed on SiO_{2} and $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Moreover, the results of curve fitting analysis of Mo-O bonds suggest that Mo^{6+}-oxide species on SiO_{2} and $\mathrm{Al}_{2} \mathrm{O}_{3}$ have two short $\mathrm{Mo}=\mathrm{O}$ double bonds and two long $\mathrm{Mo}-\mathrm{O}$ single bonds, while Mo^{6+}-oxide species on $\mathrm{Al}_{2} \mathrm{O}_{3}$ has longer $\mathrm{M}=\mathrm{O}$ double bonds and shorter Mo-O single bond than that on SiO_{2}. The short Mo-O single bond of Mo^{6+} oxide species on $\mathrm{Al}_{2} \mathrm{O}_{3}$ can be ascribed to the large ionic character of framework metal-oxygen bond (Al-O) of $\mathrm{Al}_{2} \mathrm{O}_{3}$ as compared to that (SiO) of SiO_{2} [2]. The shorter $\mathrm{Mo}-\mathrm{O}$ single bond also indicates the strong interaction between Mo^{6+}-oxide species and $\mathrm{Al}_{2} \mathrm{O}_{3}$.

From the results of XAFS measurements, the weak photoluminescence intensity of $\mathrm{Mo} / \mathrm{Al}_{2} \mathrm{O}_{3}$ can be explained by the efficient thermal deactivation from photoexcited Mo^{6+}-oxide species to support, which is enhanced by the strong interaction between Mo^{6+}-oxide species and $\mathrm{Al}_{2} \mathrm{O}_{3}$ as suggested by XAFS results. The efficient thermal deactivation process of photoexcited state of Mo^{6+}-oxide species on $\mathrm{Al}_{2} \mathrm{O}_{3}$ dramatically decrease catalytic reaction rate on $\mathrm{Mo} / \mathrm{Al}_{2} \mathrm{O}_{3}$.

References

[1] T. Kamegawa, R. Takeuchi, M. Matsuoka, and M. Anpo, Catal. Today., 111, 248 (2006).
[2] Y. Iwasawa, Adv. Catal., 35, 187 (1987).

[^0]
[^0]: * matsumac@chem.osakafu-u.ac.jp

