XAFS study on phenoxyethoxymethyl-polystyrene (PEM)-based novel microencapsulated osmium oxide catalyst

Tomoko YOSHIDA¹, Hisao YOSHIDA^{*1}, Tasuku ISHIDA², Sh KOBAYASHI² ¹ Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan ² The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Introduction

Osmium-catalyzed dihydroxylation of olefins is one of the most efficient methods for the preparation of vicinal diols. Recently, a new catalyst, phenoxyethoxymethylpolystyrene (PEM)-based polymer-supported osmium oxide catalyst (PEM-MC Os catalyst) [1], was developed based on a microencapsulation (MC) technique. The catalyst successfully proceeds asymmetric dihydroxylation of olefins using biscinchona alkaloids as a chiral legand and K₃Fe(CN)₆ as a cooxidant in H₂O/acetone, and easily recovered by filtration and reused without loss of activity several times. In order to elucidate the active site structure of the catalyst, in the present study, we applied X-ray absorption technique to investigate the electronic state and local structure of Os species in the catalyst.

Experimental

The Os L_{III} -edge XAFS measurement was performed at room temperature in transmission mode at the BL-10B station [2] of KEK-PF, Tsukuba, Japan, with a Si(311) channel-cut monochromator. The sample was sealed with a polyethylene film in a dry atmosphere. Normalization of XANES and data reduction on EXAFS were carried out as described elsewhere [3].

Results and discussion

For the Os L_{III} -edge XANES of PEM-MC Os catalyst, the position of white line was close to that for OsO₂ and K_2OsO_4 (Fig. 1), indicating that the starting material, OsO₄, was reduced to Os⁶⁺ or Os⁴⁺ ions during the preparation procedure. The figure of the XANES for the catalyst was similar to that for OsO₂ except for the intense white line.

To clarify the local structure around the Os atoms in the catalyst, we performed nonlinear curve-fitting analyses of the Fourier-filtered EXAFS of the first and the second shells around Os atoms by a least-squares method. The Os-O (or Os-C) shell was empirically extracted from the EXAFS of OsO₄. The results are listed in Table 1. The coordination numbers (CN) and interatomic distances (R) for short and long Os-O bonds in the catalyst were estimated as ca. 2 and 1.85 Å, and ca. 4 and 2.01 Å, respectively, similar to those in the OsO₂ reference sample. This suggests that Os ions in the catalyst have similar local structure to that in OsO₂. The higher white line intensity mentioned above suggest that the OsO₂ species in polymer are more cationic or more symmetric than that in the bulk OsO_2 as they are highly dispersed in polymer.

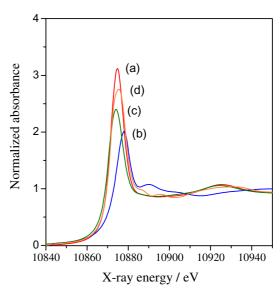


Fig. 1: Os L_{III} -edge XANES of (a) PEM-MC Os catalyst, (b) OsO₄, (c) OsO₂ and (d) K₂OsO₄·2H₂O.

Table 1: Results of curve-fitting analyses

fuble 1. Results of curve fitting unurges			
shell	CN	R / nm	$\Delta \sigma^2$
Os-O(C)	2.5	0.185	-0.00460
Os-O(C)	4.2	0.201	-0.00244
Os-O(C)	2.0	0.349	-0.00098
Os-O(C)	2.1	0.186	-0.00292
Os-O(C)	4.1	0.200	-0.00070
Os-O(C)	2.0	0.344	-0.00007
Os-O(C)	4	0.170	0
	shell Os-O(C) Os-O(C) Os-O(C) Os-O(C) Os-O(C) Os-O(C) Os-O(C) Os-O(C) Os-O(C)	shell CN Os-O(C) 2.5 Os-O(C) 4.2 Os-O(C) 2.0 Os-O(C) 2.1 Os-O(C) 4.1 Os-O(C) 2.0	shell CN R / nm Os-O(C) 2.5 0.185 Os-O(C) 4.2 0.201 Os-O(C) 2.0 0.349 Os-O(C) 2.1 0.186 Os-O(C) 2.1 0.186 Os-O(C) 2.1 0.349 Os-O(C) 2.0 0.344

 $\Delta \sigma^2$: difference of Debye-Waller factor from that for OsO₄.

References

- [1] S. Kobayashi et al., Org. Lett. 3, 2649 (2001).
- [2] M. Nomura, A. Koyama, KEK Report 89-16, 1 (1989).
- [3] T. Tanaka, et al., J. Chem. Soc., Faraday Trans. 1 84, 2987 (1988).

* h-yoshida@esi.nagoya-u.ac.jp

Users' Report 51