Soft X-ray emission study of BaTiO_{3} nanoparticles

Megumi OKI^{1}, Nobuo NAKAJIMA ${ }^{{ }^{1 *}}$, Hiroshi MARUYAMA ${ }^{1}$, Yasuhisa TEZUKA ${ }^{2}$, Toshiyuki TODA ${ }^{3}$
'Grad. Sch. of Sci., Hiroshima Univ., 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
${ }^{2}$ Fac. Sci. and Tech., Hirosaki Univ. 3 Bunkyo, Hirosaki, Aomori 036-8561, Japan
TODA KOGYO Corp., 1-4, Meiji-Shinkai, Otake, Hiroshima 739-0652, Japan

Introduction

$\mathrm{BaTiO}_{3}(\mathrm{BTO})$ is one of the most promising candidates for the host materials of next-generation high-density memory devices, because of its well-known strong ferroelectricity. BTO has a perovskite structure with Ti displacement from a body-center in tetragonal symmetry at room temperature. Recently, nano-sized BTO powders have been studied intensively. It has been reported that the dielectric constant of nano-BTO has a maximum at a certain diameter, several tens of nm, and rapidly reduces to zero with decreasing the size [1].
Ti in bulk BTO has nominally $3 d^{0}$ configuration, but actually it is strongly mixed with a charge transferred $3 d^{1} L^{-1}$ configuration by the covalency hybridization. In the case of nano-BTO, the crystal symmetry becomes higher $\left(T_{\mathrm{d}} \bullet O_{\mathrm{b}}\right)$ with decreasing the size, which was confirmed by X-ray diffraction. Then, what is the origin of enhanced ferroelectricity in nano-BTO? Does $3 d^{l} L^{-1}$ configuration still remain in nano-BTO? We therefore measured soft Xray emission (SXE) spectra in order to obtain the information of valence-band configuration.

Experimental

SXE spectra were obtained at beamline BL-2C. A soft X-ray monochromator consisting of a Rowland type graz-ing-incidence monochromator with a 5 m spherical grating (1200 lines $/ \mathrm{mm}$) [2] was used. X-ray absorption spectra were obtained by the total electron yield (TEY) method. Energy resolutions of both TEY and SXE spectra at 450 eV were $\sim 0.1 \mathrm{eV}$ and $\sim 0.4 \mathrm{eV}$, respectively.

BTO nano particles with averaged diameters ($D \mathrm{~nm}$) of $D=30,50,85,120$ were prepared. All the experiments were carried out under room temperature and ultrahigh vacuum of the order of 10^{-9} Torr.

Results and Discussion

Figure 1 shows the Ti $2 p$ TEY spectra of BTO(50 nm). The assignments of main peaks are labeled in the figure. A vertical bar indicates excitation energy in the SXE spectra shown in Fig. 2, in which the spectra are plotted against the energy shift from elastic peaks (a dotted line). A dashed line indicates the Ti $L_{\beta 1}$ fluorescence peaks. Vertical bars indicate $d-d$ excitations. Statistical accuracy is rather low, however, a slight enhance of $d-d$ excitations in $D=85$ and 50 were observed, which means that Ti displacement from the body center remains at $D=50$ even though crystal symmetry approaches to cubic. Therefore, displacement of Ti is a key role for the advent of strong ferroelectricity in nano-BTO.

Fig. 1 TEY spectra of $\mathrm{BaTiO}_{3}(50 \mathrm{~nm})$ at Ti $2 p$-edge. The $L_{2}-e_{\mathrm{g}}$ edge is chosen for the excitation energy of SXE measurements shown in Fig. 2

Fig. 2 SXE spectra of $\mathrm{BTO}(D \mathrm{~nm})$ for $D=120,85,50$ and 30 . The excitation energy is 465.4 eV . A dotted and a dashed line indicate the elastic peaks and $\mathrm{Ti} L_{\beta 1}$ fluorescence peaks, respectively. Vertical bars indicate the $d-d$ excitation peaks

References

[1] M. Yashima et al., J. Appl. Phys., 98 (2005), 014313 ; S. Aoyagi et al. J. Therm. Anal. Cal., 81 (2005), 627; S. Wada et al. Jpn. J. Appl. Phys., 42 (2003), 6188; K. Kinoshita et al., J. Appl. Phys., 47 (1976) 371; G. Arlt et al., ibid., 58 (1985) 1619; M. H. Frey et al., Ferroelectrics, 206-207 (1998) 1555.
[2] Y. Harada et al., J. Synchrotron Rad. 5 (1998), 1013

[^0]
[^0]: *nobuo@hiroshima-u.ac.jp

