Composition dependence of band offsets for $(LaAlO_3)_{1-x}(Al_2O_3)_x$ gate dielectrics determined by photoelectron spectroscopy and x-ray absorption spectroscopy

Ryutaro YASUHARA¹, Makoto KOMATSU¹, Haruhiko TAKAHASHI¹, Satoshi TOYODA¹, Jun OKABAYASHI¹, Hiroshi KUMIGASHIRA¹, Masaharu OSHIMA^{*1}, Dmitry KUKURZNYAK² and Toyohiro CHIKYOW²

The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

²National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan

Introduction

LaAlO₃ is regarded as a promising candidate for high dielectric constant (high-k) gate dielectrics dielectrics in metal-oxide-semiconductor field-effect transistors (MOSFETs). In order to search for the optimum composition for the mixture of La₂O₃ and Al₂O₃, Fujitsuka et al. investigated the thermal stability and electrical properties for $(La_2O_3)_{Lx}(Al_2O_3)_x$ composite films (x=0 ~ 0.5)[1]. On the other hand, several results have been reported for Al₂O₂ rich side, namely (LaAlO₂)₁ (Al₂O₂)₂[2, 3]. However, studies on band offsets have not been reported yet. In this study, we performed systematic investigation of band offsets in the composition range from LaAlO, to Al₂O, in order to propose the optimum composition for gate dielectrics.

Experimental

 $(LaAlO_3)_{1,x}(Al_2O_3)_x$ composite films (x=0, 0.2, 0.33, 0.5, and 1) were prepared by the combinatorial pulsed laser deposition (PLD) method on clean *p*-type Si (100) substrates at the growth temperature of 300 °C using a KrF excimer laser. Ambient oxygen pressure during deposition was 10⁻⁶ Torr. The total thickness of each sample was set at 5 nm. Synchrotron radiation photoelectron spectroscopy and x-ray absorption spectroscopy (XAS) measurements were carried out at an undulator beamline BL-2C of the Photon Factory in High-Energy Accelerator Organization (KEK).

Results and discussion

Figure1 shows the values of bandgap $(E_{-}),$ valence-band offset (VBO), and conduction-band offset (CBO) for $(LaAlO_3)_{1,x}(Al_2O_3)_x$ as a function of LaAlO₃-Al₂O₃ composition (x). The values of VBO and CBO for LaAlO₃ were determined to be 3.4 eV and 0.9 eV, respectively. These values are in good agreement with the previous ones theoretically obtained by Peacock et al.[4]. The values of VBO and CBO for Al₂O₃ are 4.7 eV and 2.0 eV, respectively. Although the value of VBO is in good agreement with the theoretical value, the value of CBO is rather smaller than the theoretical one. This is probably because the theoretical value of CBO was determined for Al₂O₃ bulk crystal. In fact, the reported experimental values of CBO for Al₂O₃ thin films were smaller than that of bulk Al₂O₃[5, 6]. The reduction of CBO in the Al₂O₃ thin film is consistent with our results. It should be noted

that the CBO becomes smaller with increasing the ratio of Al₂O₂, while the VBO becomes larger. Since valence band of oxides mainly consists of O 2p states, the shift of the VBO can be related to the chemical shift of O 1s states. On the other hand, conduction bands of La₂O₃, LaAlO₃, and Al₂O₃ mainly consist of La $5d^*$ and Al $3s^*/3p^*$ states. Thus, the structure of the conduction band is significantly changed as a function of the ratio of La to Al. The shift of the CBO is, therefore, caused by both the effect of the chemical shift for core levels and the change in conduction-band structure. Since the values of VBO are sufficiently large in all compositions, the optimum composition of $(LaAlO_3)_{1,x}(Al_2O_3)_x$ in terms of band offsets are dominated by the value of CBO. Thus, LaAlO₃ (x=0) was determined to be the optimum composition in $(LaAlO_3)_{1-x}(Al_2O_3)_x$.

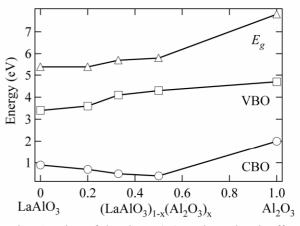


Fig. 1. Plot of bandgap (E_g) , valence-band offset (VBO), and conduction-band offset (CBO) for $(LaAIO_3)_{1-x}(Al_2O_3)_x$ as a function of $LaAIO_3-Al_2O_3$ composition.

Reference

- [1] R. Fujitsuka *et al.*, Jpn. J. Appl. Phys. **44**, 2428 (2005).
- [2] B. S. Lim et al., Appl. Phys. Lett. 84,3957 (2004).
- [3] A. D. Li et al., Appl. Phys. Lett. 83, 3540 (2003).
- [4] P. W. Peacock et al., J. Appl. Phys. 92, 4712 (2002).
- [5] S. Miyazaki, J. Vac. Sci. Technol. B 19, 2212 (2001).
- [6] V. V. Afanas'ev et al., J. Appl. Phys. 91, 3079 (2002).

*oshima@sr.t.u-tokyo.ac.jp