Study of the t_{2g} orbital in the YTiO$_3$ by using Magnetic Compton Profile Measurement

Naruki Tsuji1*, Masahisa ITO1, Hirosi Sakurai1, Kousuke Suzuki1, Kensuke Kitani1, Hiromichi ADACHI2, Hiroshi KAWATA2, Hironori NAKAO3, Youichi MURAKAMI3, Yasujiro TAGUCHI4, Akihiro Koizumi5, Yoshinori TOKURA6

1School of Engineering, Gunma University, Tenjin 1-5-1, Kiryu, Gunma 376-8515, Japan
2 KEK-PF, Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
3 Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan
4IMR, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
5 Faculty of Science, Himeji Institution of Technology, Kamigori, Ako-gun, Hyogo, 678-1297, Japan
6 School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan

YTiO$_3$ is one of the compounds which show orbital ordering phenomenon. The 3d electrons of Ti$^{3+}$ ions in t_{2g} configuration exhibit orbital ordering. Crystal structure of YTiO$_3$ is the perovskite (Pbnm). This compound is ferromagnetic below 28K.

The Magnetic Compton scattering (MCS) is one of the strong method of observing the electron structure. The physical quantity obtained from this experiment is Magnetic Compton Profile (MCP). MCP is directly linked to the wave function of magnetic electron.

The measurement was carried out at 10 K with a magnetic field of 0.85 T. The incident x-ray energy was 60 keV. The experiment was performed at the AR-NE1A1 beamline.

We measured the MCP of YTiO$_3$ along the a-axis and the c-axis. The result is Fig1(a-axis), (c-axis). Fig1(a-c) is a profile that pulled Fig1(a-axis) and Fig1(c-axis). As a result, we confirm that there are anisotropy in the MCP along the a-axis and the MCP along the c-axis.

We are measuring the MCP of YTiO$_3$ along the b-axis.

Fig. 1
Magnetic Compton profile of YTiO$_3$ along a,c-axis and a-c.

* naruki_t@msn.com