Photoemission study of TiO₂/VO₂ interfaces

 Koji MAEKAWA¹, Masaru TAKIZAWA¹, Hiroki WADATI¹, Atsushi FUJIMORI¹, Hiroshi KUMIGASHIRA², Masaharu OSHIMA², Yohei NAGAO³, Yuji MURAOKA³, and Zenji HIROI³
¹ Department of Physics and Department of Complexity Science and Engineering, University of Tokyo, Kashiwa 277-8561, Japan
² Department of Applied Chemistry, University of Tokyo, Tokyo 113-8656, Japan
³ Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan

Introduction

Metal-insulator transition has been extensively studied because of its fundamental interest as well as its close relationship to remarkable phenomena such as hightemperature superconductivity in cuprates and colossal magnetoresistance in manganites [1]. Recently, high quality interfaces between transition metal oxides have became available due to the development of sample preparation technique. Particularly, interfaces between the band insulator $SrTiO_3$ (d⁰) and the Mott insulator LaSrTiO₃ (d¹) have attracted interest because of its metallic behavior [2-5]. In the present work, we have performed photoemission spectroscopy (PES) measurements of interfaces between another d⁰ band insulator TiO₂ and d¹ Mott insulator VO₂.

Experiment

VO₂/TiO₂ thin films were prepared using pulse laser deposition (PLD) technique. V₂O₃ pellet was used as a target. During the deposition, the substrate temperature was kept at 733 K and oxygen pressure was maintained at 1.0 Pa. The film thickness was about 10 nm-15 nm. TiO₂ capped samples were prepared as follows. The Rutiletype TiO₂ (r-TiO₂) deposited 673 K on the VO₂ thin film, while amorphous TiO₂ (a-TiO₂) was deposited TiO₂ at room temperature. Photoemission measurements were performed at BL-2C of Photon Factory. PES spectra were measured using a Scienta SES-100 analyzer.

Results and Discussion

PES spectra in the V 3d band region of VO₂, a-TiO₂/VO₂, r-TiO₂/VO₂ are shown in Fig. 1. All the spectra showed both coherent and incoherent parts. Incoherent part was observed most strongly in the r-TiO₂/VO₂. This may be caused by the difference in the sample preparation process. In the r-TiO₂/VO₂ sample, Ti and V atoms may be interdiffused at the interface and the interface region may behave like Ti-doped VO₂ which become insulating as the Ti concentration increases. The temperature dependence of the V 3d band of a-TiO₂/VO₂, r-TiO₂/VO₂ are shown in Fig. 2. In both samples, metallic states were not observed in the interface between insulating VO₂ and insulating TiO₂ at low temperature, in contrast to the case of SrTiO₃-LaTiO₃ interface.

Fig. 1: V 3*d* band of VO₂, $a-TiO_2/VO_2$, $r-TiO_2/VO_2$.

Fig. 2: Temperature-dependent photoemission spectra $a-TiO_2/VO_2$.

References

[1] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. **70** 1039 (1998),

- [2] A. Ohtomo et al. Nature. 419, 328 (2002).
- [3] K. Shibuya et al., Jnp. J. Appl Phys. 43, L1178 (2004).
- [4] S. Okamoto and A. J. Millis Nature **428**, 630 (2004)
- [5] M. Takizawa et al., cond-mat/0604201 (2006).

*maekawa@wyvern.phys.s.u-tokyo.ac.jp