Soft x-ray emission from valence band to S 2p in CuIr, S_4

Yukihiro TAGUCHI*, Katsuyuki Kitamoto, Kojiro MIMURA, Tatsunori NODA, Yukihiro FUJITA, Kouichi ICHIKAWA, Osamu AITA, Hiroki ISHIBASHI

Osaka Prefecture Univ., Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan

Thiospinel CuIr₂S₄ exhibits simultaneous structural, metal-to-insulator (MI) and paramagnetic-to-diamagnetic transitions around 230 K with decreasing temperature. The formal Ir valency is 3.5+. It has been considered that charge ordering (CO) of Ir ions takes place in the insulating phase of $CuIr_{3}S_{4}$ [1]. The CO of Ir ions in $CuIr_{3}S_{4}$ may partly result from electron correlation among Ir 5d electrons. Such effect has been suggested by the fact that the valence-band (VB) structure of CuIr₂S₄ obtained by photoemission spectroscopy (PES) disagrees with band-structure calculations with respect to Ir 5d-derived structure despite qualitative agreement for Cu 3d- and S 3p-derived features [2,3]. It is considered that the electronic states near the Fermi level $E_{\rm F}$ or the VB maximum plays an important role in the MI and CO transitions of CuIr₂S₄. According to the band-structure calculations the states near $E_{\rm F}$ are mainly ascribed to Ir 5d-S 3p hybridized band [2]. In this work we have investigated the S 3p states hybridized with Ir 5d in CuIr₂S₄ by means of soft x-ray emission spectroscopy (XES). When a sulfur 2p core-hole is created, radiative transitions from VB to S 2p reflect the S 3p hybridized with *n*d and/or *n*s orbitals because of the dipole selection rule for XES and of the localized nature of the core hole. Cu ion of $CuIr_{3}S_{4}$ has essentially a $3d^{10}$ configuration [3].

Measurements were carried out at beamline BL-19B. The sample used was a sintered poly-crystal. The sample surface was cleaned in situ by scraping.

Fig. 1 shows the S $L_{2,3}$ XES spectrum of CuIr₂S₄ at 275 K (open circles). $E_{\rm F}$ corresponds to the S 2p_{1/2} binding

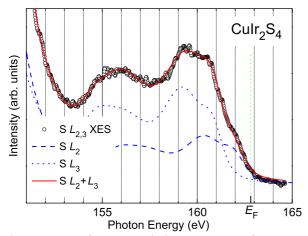


Fig.1. S $L_{2,3}$ soft x-ray emission spectrum of CuIr₂S₄ at 275 K (open circles). Broken, dotted and solid lines are decomposed L_2 and L_3 emission spectra and the sum of them, respectively.

energy of CuIr,S₄ determined by PES. A shoulder structure in XES is seen at 0.8 eV below $E_{\rm F}$ in agreement with the previous PES measurement (dots in Fig. 2). A previous PES study has revealed that the structure has contribution from Ir 5d [4]. Thus the structure in XES results from the S 3p-Ir 5d hybridized band in accord with the band-structure calculations. In order to confirm that the S 2p spin-orbit splitting of ~1.2 eV does not cause the structure, we decomposed the S L_{23} spectrum of CuIr₂S₄ into L_2 (2p_{1/2}) and L_3 (2p_{3/2}) spectra. We assumed that the transition probability from VB to S $2p_{1/2}$ and $2p_{3/2}$ depends only on the statistical weight of each core state, i.e. intensity ratio of 2:1 and that each spectrum can be reproduced by superposition of several Voigt functions. The obtained L_2 and L_3 spectra are also shown in Fig. 1. The S L, XES, PES and theoretical spectra are compared in Fig. 2. The S L_2 spectrum shows that the S 3p states hybridized with Ir 5d are distributed over almost the entire energy region of VB in good agreement with S 3p partial density of states obtained by the band-structure calculations [2].

References

- [1] T. Furubayashi et al., J. Phys. Soc. Jpn. **63**, 3333 (1994), S. Nagata et al., Phys. Rev. B **58**, 6844 (1998),
- P. G. Radaelli, Nature **416**, 155 (2002).
- [2] T. Oda et al., J. Phys.: Condens. Matter 7, 4433 (1995).
- [3] J. Matsuno et al., Phys. Rev. B 55, R15979 (1997).
- [4] K. Kitamoto et al., Physica B, to be published.
- * taguchi@ms.osakafu-u.ac.jp

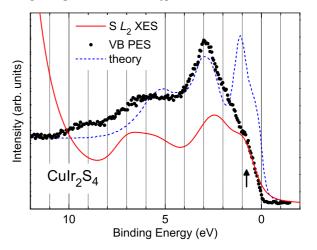


Fig. 2. Comparison of S L_2 x-ray emission (solid line) with photoemission (dots) and theoretical spectra (broken line) given in Ref. 3.