Local structures of 10 mol% Y,O, doped ceria ceramics by XAFS spectroscopy

Yarong WANG¹, Hiroyuki KAGEYAMA^{*2}, and Toshiyuki MORI¹ ¹ Ecomaterials Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan ²National Institute of Advanced Industrial Science and Technology (AIST),

Midorigaoka 1-8-31, Ikeda, Osaka 563-8577, Japan

Introduction

Rare-earth doped ceria with a fluorite structure, has been considered more promising electrolyte materials than ZrO_2 -based materials such as Y_2O_3 doped ZrO_2 (YSZ), especially for application in solid oxide fuel cells (SOFCs) operating at intermediate temperatures [1]. It is said that the ionic conductivity of rare-earth doped ceria largely depends on the dopant cations and their concentration [2]. Besides, microstructure of the sintered body, such as average grain size, is also known to have significant effects on the ionic conductivity. These phenomena are considered to relate to the local structural changes.

In this work, the local structures around Ce and Y atoms in 10 mol% Y_2O_3 doped ceria ceramics were studied by XAFS spectroscopy using samples with average grain sizes of about 150 nm and about 700 nm.

Experimental

Powder samples of 10 mol% Y_2O_3 doped ceria (YDC) were prepared by sintering at temperatures of 1273 K for 6 hours (average grain sizes of about 150 nm, YDC(150)) and 1723 K for 4 hours (average grain sizes of about 700 nm, YDC(700)), respectively [3].

The local structures around Ce and Y atoms in the samples were examined by Y-K and Ce-K XAFS analysis at room temperature and at 773 K, respectively. The measurement of Ce K-XAFS was done at the Beamline BL01B1 of the SPring-8 (Proposal No. 2003A0045-NX-np). The k³-weighted EXAFS function in the k-region from 2 to 14 Å⁻¹ for room temperature and that from 2 to 12 Å⁻¹ for 773 K were used for the calculation of radial structure functions (RSFs), respectively. The curve fitting analysis was performed for the RSF typically from 1.0 to 3.3 Å (in R-space) using the theoretical phase shifts and amplitude functions derived from FEFF code.

Results and Discussion

The comparison of the RSFs and the results of curve fitting for Ce K-edge indicated that the local structure around Ce cation in the YDC is similar to that of Ce cation in the fluorite CeO_2 structure though the coordination number of Ce-O tends to be smaller than 8. On the other hand, the comparison of the RSFs and the results of curve fitting for Y K-edge suggested that the local structure around Y cation in the YDC is significantly different and bears more resemblance to that of the Y cation in the C-type Y_2O_3 structure. A more accurate description of the local structures around Y cation can be given by analyzing the Y-K edge EXAFS spectra based on the C-type Y_2O_3 structure with three Y-O and two Y-cation shells as shown in Table1. The smaller σ value and goodness-of-fit factor R_f successfully supported our assumption above.

Table1. Fitting Results of Y-K edge EXAFS for pure Ctype Y_2O_3 and 10mol% Y_2O_3 doped ceria (YDC(150)) based on C-type Y_2O_3 structure model [4].

Sample	Bond	Coordination	Bond	Mean
		number	length	square
		CN^*	R (Å)	relative
				displace-
				ment σ
				(Å)
Y ₂ O ₃ At RT	Y-O(1)	2.0	2.22	0.04
	Y-O (2)	2.0	2.28	0.04
	Y-O (3)	2.0	2.36	0.04
	Y-Y (1)	6.0	3.51	0.07
	Y-Y (2)	6.0	4.02	0.07
YDC	Y-O(1)	2.0 (2.0)	2.24	0.04
(150)	Y-O (2)	2.0(2.0)	2.32	0.04
At RT	Y-O (3)	2.0(2.0)	2.41	0.04
	Y-Y	2.4 (9.0)	3.98	0.10
	Y-Ce	9.6 (3.0)	3.76	0.10
At HT	Y-O(1)	2.0 (1.7)	2.24	0.09
	Y-O (2)	2.0 (2.0)	2.34	0.09
	Y-O(3)	2.0 (1.5)	2.37	0.09
	Y-Y	2.4 (7.2)	4.09	0.10
	Y-Ce	9.6 (4.7)	4.12	0.10

*The data outside the () were the initial values while those inside were calculated from the last several cycles of fitting.

<u>References</u>

- [1] B. C. H. Steel et al., Nature 414, 345-352 (2001).
- [2] T. Kudo et al., J. Electrochem. Soc. 122, 142-147 (1975).
- [3] Y. Wang, et al., J. Mater. Res., 18, 1239-1246 (2003).
- [4] Y. Wang, et al., J. Solid State Ionics, in press.

*h-kageyama@aist.go.jp