SR-SAXS studies on morphology formation in a binary blend of crystallineamorphous diblock copolymer and crystalline homopolymer. 2.

Michiaki AKABA and Shuichi NOJIMA*

Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, H-125, 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552, Japan

Introduction

We have investigated the process of morphology formation in a binary blend of crystalline homopolymer and crystalline-amorphous diblock copolymer. Here, we quantitatively analyze the experimental results^{1.3}, and clarify the mechanism of morphology formation as a function of characteristic length of composition variation ξ induced by macroscopic phase separation and also crystallization temperature *Tc*.

Experimental Section

Samples We used poly(ϵ -caprolactone)-block-polybutadiene (PCL-b-PB) as a block copolymer and poly(ϵ caprolactone) (PCL) as a crystalline homopolymer.

SAXS measurements The SR-SAXS experiment was performed at beam line BL-10C. The accumulation time was 10 sec for each measurement. The background scattering and Lorentz factor were taken into account, and finally the relative intensity was obtained as a function of wave number s (= $(2/\lambda)\sin \theta$, 2θ scattering angle). To evaluate the angular position and relative intensity of each scattering peak accurately, we used the Lorenz function for each scattering peak and the Debye-Bueche equation for the increasing intensity at lower s. The peak position (or spacing) and peak intensity were finally evaluated as a function of crystallization time t_c at each ξ and T_c .

Results and Discussion

The spacing from the microdomain structure is gradually replaced with two kinds of spacing, one from the lamellar morphology formed in the crystallized PCL*b*-PB region and the other from the crystallized PCL

Fig. 1 Half-time of crystallization $t_{_{1/2}}$ for PCL (\bigcirc) and PCL-*b*-PB (\square) regions plotted against ξ for the blend with $\phi_{_{PCL}} = 0.6$. The closed symbols stand for $t_{_{1/2}}$ of neat PCL (\bullet) and PCL-*b*-PB (\blacksquare).

region, at the middle of *tc*. However, the *tc* dependence of the normalized intensity depends significantly on ξ and *Tc*. For example, the normalized intensity from two regions make one master curve at $T_c = 35$ °C while they deviate at $T_c > 40$ °C, indicating that the crystallization rates of PCL and PCL-*b*-PB are equivalent at $T_c = 35$ °C but they differ considerably at $T_c > 40$ °C.

The half-time of crystallization $t_{1/2}$, which is a measure of crystallization rate, can be evaluated from the tc dependence of each SAXS peak, and is plotted in Figs 1 and 2 against ξ and T_c. Fig 2 shows that when ξ is less than 500 nm the crystallization rate of PCL and PCL-b-PB regions is identical and intermediate between those of neat polymers, but the difference becomes significant when ξ goes beyond 500 nm and they approach to the crystallization rate of neat polymers. Fig. 3 shows that at $T_c = 35$ °C the values of $t_{1/2}$ for PCL-*b*-PB and PCL are identical but they deviate significantly with increasing T_c . In addition, $t_{1/2}$ for the quenched blend with a smaller ξ takes a middle position between those for PCL and PCLb-PB in the phase-separated blend. These Figures clearly show that the combination of ξ and T_c drives the crystallization behavior of this blend.

References

[1] M. Akaba and S. Nojima Polym. J., 37, 464 (2005).

[2] M. Akaba and S. Nojima Polym. J., 37, 584 (2005).

[3] M. Akaba and S. Nojima Polym. J., 38, xxx (2006).

*snojima@polymer.titech.ac.jp

Fig. 2 *Tc* dependence of $t_{1/2}$ for PCL-*b*-PB (•) and PCL (•) in the phase-separated blend with $\xi = 2.5 \,\mu m. \Box$ represents the result for the quenched blend, where $t_{1/2}$ is equivalent for PCL and PCL-*b*-PB.