Structural analysis of Pd₄₀Cu₄₀P₂₀ and Pd_{45.5}Cu_{35.5}P₁₉ metallic glasses

Osami HARUYAMA*, Kazumasa SUGIYAMA^a, Masatoshi SAITO^b and Yoshio WASEDA^c

*Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510

^aEarth and Planetary Science, The University of Tokyo, Bunkyou-ku 113-0033

Faculty of Medicine, Niigata University, Niigata 951-8518

[°]Institute for multi-component materials, Tohoku University, Sendai 980-8577

Introduction

Pd-Cu-P alloy system is a constituent of Pd-Cu-Ni-P glass system, showing an extremely small critical cooling rate for vitrification and high resistance to crystallization [1]. Another component, Pd-Ni-P ally system has been examined well about the structure. However, the structural analysis of Pd-Cu-P glass system has not been presented. Although Hi et al. reported [1] that a bulk Pd-Cu-P glass is capable to produce over a large compositional range, a typical $Pd_{40}Cu_{40}P_{20}$ glass has not been reported to be obtained in a bulk shape. We have carefully searched an adequate composition for bulk glass formation and succeeded to produce a bulk glass with the Pd₄₅₅Cu₃₅₅P₁₉ composition by water-quenching. This suggests that the glass forming ability (GFA) was remarkably improved by a small adjustment of alloy composition. The objective in the present report is to check the difference of amorphous structure between $Pd_{40}Cu_{40}P_{20}$ and $Pd_{45.5}Cu_{35.5}P_{19}$ glasses.

Experimental Results

A bulk $Pd_{45.5}Cu_{35.5}P_{19}$ glass with a rod shape of 6 mm in diameter and 20 mm in length was prepared by waterquenching. A ribbon $Pd_{40}Cu_{40}P_{20}$ glass was prepared by melt-spinning with a cupper roll. The structural analysis for these glasses was performed by normal scattering with Mo-K α radiation (17.5 keV) and anomalous X-ray scattering (AXS) experiments near the Cu-K absorption edge (8.980 keV) with a far-edge energy of 8.680 keV and a near-edge energy of 8.955 keV at BL7C station. AXS enables us to examine the species-specified local structure of the glass, i.e. Cu-P, Cu-Cu and Cu-Pd correlations

Figure 1 presents the radial distribution functions (RDFs) for AXS-experiments, where the number densities, 75.3 and 74.1 nm⁻³, were used for $Pd_{40}Cu_{40}P_{20}$ and $Pd_{45.5}Cu_{35.5}P_{19}$ glasses. The 1st peaks of RDFs were fitted well by a linear combination of three Gaussian functions, corresponding to the nearest Cu-P, Cu-Cu and Cu-Pd atomic correlations. The nearest neighbour distance r_{ii} and coordination number N_{ii} were estimated and the result is summarized in Table I. The r_{ii} is physically acceptable, when compared to the atomic radius $r_{pd}=0.141$, $r_{cu}=0.127$ and $r_{p}=0.100$ in ref. [3]. Nearest neighbour metallic atoms Z around the centred P atom, assuming the statistical distribution of the metallic atoms, is predicted to be $Z=1.7x(0.4/0.2)x2\approx6.8$ for the $Pd_{40}Cu_{40}P_{20}$ glass, and this result is compatible with various metal-metalloid binary glasses [4]. The

coordination number of Cu and Pd atoms around the centred Cu atom, N_{CuCu} and N_{CuPd} , are compatible with each other for Pd₄₀Cu₄₀P₂₀ glass, while N_{CuCu} is rather larger for Pd₄₅₅Cu₃₅₅P₁₉ glass than Pd₄₀Cu₄₀P₂₀ glass. Also, $N_{PCu}\approx3.5x(0.355/0.19)=6.5$ is obtained, and this value is approximately two times larger than $N_{PCu}\approx1.7x(0.4/0.2)=3.4$ of Pd₄₀Cu₄₀P₂₀ glass. When the tricapped triangular prism constitutes a predominant part of the local structural unit of a glass with the composition of TM₈₀M₂₀ (TM: transition metal, M: metalloid) [4], N_{MTM} should range over 6 - 9. Therefore, under the assumption that the local amorphous structure for Pd₄₅₅Cu₃₅₅P₁₉ glass is similar to that for Pd₄₀Cu₄₀P₂₀ glass, the present results suggest that micro-phase separative tendency might increase in Pd₄₅₅Cu₃₅₅P₁₉ glass.

Fig. 1 AXS radial distribution functions. Fine lines show the de-convolution of 1st peaks due to Gaussian functions.

	Cu-P		Cu-Cu		Cu-Pd	
	r _{ii}	N_{ii}	r _{ii}	N_{ii}	r_{ii}	N_{ii}
Pd40	0.240	1.7	0.259	4.8	0.282	5.9
Pd45.5	0.244	3.5	0.265	7.8	0.288	3.8

Table I.Comparison of r_{ii} and N_{ii} for Pd₄₀ and Pd₄₅₅ glasses.

References

[1] N. Nishiyama and A. Inoue: Appl. Phys. Lett. 80, 2002, 568.

[2] Y. Hi, T. Shen and R.B. Schwarz: Metall. Mater. Trans. **29A**, 1998, 1795.

[3] T. Egami and Y. Waseda: J. Non-crystal. Solids. 64, 1984, 113.

[4] P.H. Gaskell: Glassy Metals II, edited by H.Beck and H.-J. Güntherodt, Springer, 1983, p.5

* haruyama@ph.noda.tus.ac.jp