10C/2005G191

Simultaneous DSC-SAXS measurement of PEO-b-PMA(Stb) copolymers

Takeshi YAMADA¹, Severine BOYER^{1,2}, Hirohisa YOSHIDA*^{1,2}
¹Graduate School of Urban Environmental Science, Tokyo Metropolitan University, Hachiouji, Tokyo 192-0397, Japan, ²JST (CREST), Kawaguchi, Saitama 332-0012, Japan

Introduction

Di-block copolymers form the nano-scale ordered structure due to phase separation as an equilibrium state. We have reported the phase transitions and the nano-scale order structure of amphiphilic di-block copolymers consisted of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(methacrylate) derivatives PMA(R) containing liquid crystalline mesogen unit (R) as an ester [1-3]. In the case of di-block copolymer having azobenzene as a mesogenic unit, both smectic C and A were observed on heating by the simultaneous DSC-SAXS measurement. In this study, the nano-scale structure and liquid crystalline state of amphiphilic di-block copolymer having stilbene moieties as mesogenic unit, PEO₁₁₄-b-PMA(Stb)_n.

Experiments

Materials

PEO₁₁₄-b-PMA(Stb)_n used through the experiments was prepared by the atom transfer radical polymerization. The degree of polymerization of PMA(Stb), n, was determined by ¹H-MNR, and .the molecular weight disparity Mw/Mn determined by GPC was less than 1.1.

Methods

The simultaneous DSC-XRD measurements [4] were performed by SAXS optics at BL-10C, PF, KEK. The wavelength of X-ray and the measurement range of scattering vector were 0.1488 nm and 0.06 nm⁻¹ < q (= $4\pi \sin\theta/\lambda$) < 3 nm⁻¹, respectively. DSC scanning rate and XRD time resolution were 2 K min⁻¹ and 30 sec, respectively.

Results

Nano-scale structure

The SAXS profile change of PEO_{114} -b-PMA(Stb)₄₅ obtained by DSC-SAXS on heating was shown in Fig.1. DSC indicated three endothermic peaks at 40, 140 and 160 °C, the endothermic peak at 40 °C was assigned to the melting of PEO segment. The SAXS profiles of PEO_{114} -b-PMA(Stb)_n showed the scattering peaks in the q range from 0.3 to 1.0 nm⁻¹, these peaks (at q*, q*^{1/2}, 3q*^{1/3}, and 2q*) indicated the hexagonal packed cylinder structure for PEO_{114} -b-PMA(Stb)_n with n = 26 - 75, however, PEO_{114} -b-PMA(Stb)₄ formed the lamellar structure. The scattering peaks at q*^{1/2}, 3q*^{1/3}, and 2q* became weak above the melting of PEO, and the peaks at q*^{1/2}, and 3q*^{1/3} appeared again at 170 °C. These nano-scale structures observed at various temperatures were almost the same with those of

PEO₁₁₄-b-PMA(Az)_n, which contained azobenene moieties as liquid crystalline mesogenic units [2, 3].

Liquid crystalline phase

In Fig.1, the scattering peak at 1.8 nm⁻¹ was corresponded to the smectic layer of hydrophobic PMA(Stb) domain. The q value of smectic layer was constant below the melting temperature of PEO, and increased in the temperature range from 100 to 140 °C. The q value and its intensity of smectic layer decreased in the temperature range from 140 to 160 °C, and this scattering peak disappeared at the endothermic DSC peak at 160 °C. From this result, the endothermic DSC peak at 160 °C was assigned as the isotropic transition of PEO₁₁₄b-PMA(Stb)₄₅. In the case of PEO₁₁₄-b-PMA(Az)_n, two types of smectic phase, $\boldsymbol{S}_{\!\scriptscriptstyle C}$ and $\boldsymbol{S}_{\!\scriptscriptstyle A}$ were observed and the transition between $S_{\scriptscriptstyle C}$ and $S_{\scriptscriptstyle A}$ was measured thermoreversibly. Furthermore investigations are proceeding to assign the type of liquid crystalline state of PEO₁₁₄-b-PMA(Stb)_n.

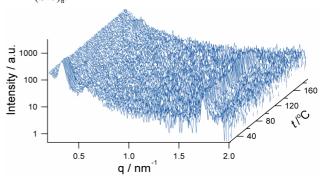


Fig.1 SAXS profile change of PEO_{114} -b-PMA(Stb)₄₅ on heating

References

- [1] H. Yoshida et al., Trans. Mat. Res. Soc. Japan, 29, 861 (2004).
- [2] T. Yamada et al., Trans. Mat. Res. Soc. Japan, 30, 675 (2005).
- [3] S. Y. Jung et al., Colloids & Surface A, in press (2006)[4] H. Yoshida et al., Thermochimica Acta, 264, 173 (1995)
- * yoshida-hirohisa@c.metro-u.ac.jp