EXAFS study of filled skutterudites PrOs₄Sb₁, and LaOs₄Sb₁,

Kiyofumi NITTA¹, Daisuke KIKUCHI², Takafumi MIYANAGA*¹, Katsuhiko TAKEGAHARA¹, Hitoshi SUGAWARA³ and Hideyuki SATO²

1Department of Advanced Physics, Faculty of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan

2Graduate School of Science, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

3Department of Physics, Faculty of Integrated Arts and Sciences, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima, 770 Japan

Introduction

The filled-skutterudite $PrOs_4Sb_{12}$ is well known to be the first Pr compound that shows the heavy fermion superconductivity. The superconductivity of this material is not belong to *s*-wave type and expected to be new anisotropic type superconductivity. This interesting phenomenon is known to come from rattling motion of Pr ion in the Os₄Sb₁₂ cage, which suggested by the ultrasonic measurement [1]. Cao et al. have presented the XAFS result for this compound [2]. They reported Debye-Waller factor for Pr-Sb atomic pair is larger than that for Os-Sb atomic pair in the cage. We measured Pr L_{III} - and Os L_{III} edge XAFS for PrOs₄Sb₁₂ and further La L_{III} - and Os L_{III} edge for LaOs₄Sb₁₂ to compare the motion of the center atom in the cage.

Experimental

Pr $L_{\rm III^-}$ (5.96keV), La $L_{\rm III^-}$ (5.48keV) and Os $L_{\rm III^-}$ (10.9keV) edge X-ray absorption spectra were obtained for PrOs₄Sb₁₂ and LaOs₄Sb₁₂ powders at beam line BL-9C and BL-12C. The measurements were performed in transmission mode at temperature ranging from 25K to 300K.

Results and Discussion

Figure1 (a) shows temperature dependence of 2nd order cumulant or Debye-Waller factor C_2 for $\text{PrOs}_4\text{Sb}_{12}$ and $\text{LaOs}_4\text{Sb}_{12}$. Cao et al. have presented the XAFS result for this compound: They reported Debye-Waller factor for Pr-Sb atomic pair is larger than that for Os-Sb atomic pair in the cage. We confirmed that the atomic pairs contained center atom in the cage had larger C_2 values than that of Os-Sb (cage) atomic pair. And Fig.1 (a) shows that Pr atomic pairs have larger C_2 values than that of La atomic pairs. It is interesting that the temperature dependence of C_2 cannot be fitted by Einstein curve, but the behavior should be considered as the atomic pair has a double-well potential discussed in the theoretical calculation [3].

Figure1 (b) shows temperature dependence of experimental and theoretically calculated 3rd order cumulant C_3 for Pr-Sb atomic pair. It is characteristic behavior that C_3 has maximum point around 150K for this atomic pair. From the theoretical study, a diatomic system which has a double-well interatomic potential is expected to show such a behavior. In the case that atomic potential is asymmetry, the maximum temperature of C_3 is almost the same as the temperature height of potential barrier in theinteratomic double-well potential. By fitting theoretical calculation to experimental data, we obtained

the barrier and width between two wells of Pr-Sb interatomic potential to be 0.025eV and 0.32Å, respectively.

Figure1. (a) Temperature dependence of C_2 for $PrOs_4Sb_{12}$ and LaOs4Sb₁₂ and (b) temperature dependence of experimental and theoretically calculated C_3 for Pr-Sb atomic pair.

References

T. Goto, Y. Nemoto, K. Sakai, T. Yamaguchi, M. Akatsu, T. Yanagisawa, H. Hazama, K. Onuki, H. Sugawara and H. Sato, Phys. Rev. B 69 180511 (2004).
D. Cao, F. Bridges, S. Bushart, E. D. Bauer, and M. B.

Maple, Phys. Rev. B 67, 180511(2003).

[3] K.Nitta, T. Miyanaga, T. Fujikawa, J. Phys. Soc. Jpn 75, 054603(2006)

*takaf@cc.hirosaki-u.ac.jp