ABSOLUTE SENSITIVITY OF THE VUV SPECTROGRAPH FOR PLASMA DIAGNOSTICS

Masayuki YOSHIKAWA*1, Yuusuke KUBOTA1, Takayuki KOBAYASHI1 and Ken MATAMA1
1Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8755, Japan

Introduction
Measurements of spatial and temporal variation of spectra in the wavelength range from vacuum ultraviolet (VUV) to soft x-ray (SX) are necessary to determine radiation power losses and ion density profiles which directly relate to the impurity transport, confinement and sources in magnetically confined plasmas. We developed space- and time-resolving VUV (150-1050 Å) [1] and SX (20-350 Å) [2] spectrographs and applied for impurity diagnostics in the tandem mirror GAMMA 10 [3].

For quantitative analyses of emission lines, it is important to characterize the absolute sensitivity of these spectrograph systems throughout their wavelength ranges. Previously, we measured the absolute sensitivities of VUV spectrograph by changing the incident light angle of the VUV spectrograph. We have changed the recording camera for improving the sensitivity of the VUV spectrograph. In this report, we show the absolute sensitivity of the VUV spectrograph with using a new CCD camera.

Experiments
In the space- and time-resolving VUV spectrograph, a concave grating ruled with varied spacing (Hitachi P/N001-0266) is used, which has a radius of curvature of 500 mm, a nominal groove density of 1200 g/mm and a ruled area of 48×48 mm2. The nominal incident angle is 51° and the effective blaze wavelength is 60 nm. The entrance slit is a 6-mm in height and 100-µm in width. A MCP intensified detector having 50×50 mm2 active area is set on the flat field output plane. The newly installed recording system of spectral image is a CCD camera (Sony XC HR-50) with a scanning controller. The resolution of video image is eight bit. The maximum frame rate with full image size, 640×480 pixels, is 30 frame/s and the shutter speed can be changed from 1 to 125 ms.

The experiments have been carried out at BL-11C. The incident photon intensity was monitored just behind the entrance slit by using an absolutely calibrated XUV silicon photodiode (IRD AXUV-100G). The output spectral image was recorded by the CCD camera. Measurements are repeated for wavelength range from 35 nm to 140 nm at the BL-11C with 5 nm intervals.

Figure 1 shows an absolute sensitivity of the VUV spectrograph for the first order diffracted light as a function of wavelength. The sensitivity of the new CCD camera is about 10 times higher than that with using an old solid state camera (Reticon MC9524). Moreover, the wavelength resolution is about 2 times higher than that with the old system. We have to carry out the absolute calibration experiments in the whole wavelength range of the VUV spectrograph system using the new CCD camera.

Fig. 1 An absolute sensitivity of the VUV spectrograph for the first order diffracted light as a function of wavelength.

References

*yosikawa@prc.tsukuba.ac.jp