Thermal decomposition of LaAlO₃/SiO₂/Si gate stack structures studied by synchrotron radiation photoemission spectroscopy

Ryutaro YASUHARA¹, Kohei YOSHIMATSU², Satoshi TOYODA¹, Hiroshi KUMIGASHIRA^{1,2}, Masaharu OSHIMA^{*1,2}, Guo-Lin LIU³, Ziyuan LIU³, and Kazuto IKEDA³

¹Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan ²JST-CREST, Bunkyo-ku, Tokyo 113-8656, Japan

³Semiconductor Technology Academic Research Center, Kohoku-ku, Kanagawa 222-0033, Japan

Introduction

Recently high dielectric constant (high-k) materials such as Al₂O₃, ZrO₂, HfO₂, rare-earth oxides, *etc.* have been intensively studied as alternatives to SiO₂ which has long been used as gate dielectrics in ultra-large scale integration (ULSI) metal-oxide-semiconductor fieldeffect transistors (MOSFETs) [1].

Among them, $LaAlO_3$ is regarded as a promising candidate for high dielectric constant (high-*k*) gate dielectrics dielectrics in metal-oxide-semiconductor field-effect transistors (MOSFETs) [2].

Although thermal stability of $LaAlO_3$ under various conditions has been reported [3], the behavior of $LaAlO_3$ thin films on Si during ultrahigh vacuum (UHV) annealing has not been clarified. Thus, we have studied the changes in chemical states of $LaAlO_3/Si$ interface after UHV annealing.

Experimental

LaAlO₃ thin films were prepared by laser molecular beam epitaxy method on clean *n*-type Si (100) substrates at the growth temperature of 300 °C using a Nd:YAG laser. Ambient oxygen pressure during deposition was 10 ⁶ Torr. The total thickness of each sample was set at about 3 nm. Synchrotron radiation photoemission spectroscopy measurements were carried out at an undulator beamline BL-2C of the Photon Factory in High-Energy Accelerator Organization (KEK). Annealing of LaAlO₃ thin films was performed under UHV by the direct current flowing method through the samples for 3 min at each temperature before the photoemission measurements.

Results and discussion

Figure 1(a) shows the Si 2*s* core level spectra for asgrown, 700 °C-, 800 °C-, and 850 °C-annealed LaAlO₃ thin films. The peak intensity ratio of Si oxide to Si substrate is larger for 700 °C- and 800 °C-annealed samples than that for as-grown one in Si 2*s* spectra, which indicates the formation of LaAlSiO_x due to the interdiffusion of the interfacial SiO₂ layer and the top LaAlO₃ layer during annealing. This is supported by the fact that the peak positions of Al 2*p* core level for 700 °Cand 800 °C-annealed LaAlO₃ shift toward higher binding energy than that for as-grown LaAlO₃, as shown in Fig. 1(b).

After 850 °C annealing, intensity of Si oxide peak drastically decreases. This is due to the desorption of Si

Fig. 1 (a) Si 2s and (b) Al 2p spectra for as-grown, 700° C-, 800° C-, and 850° C-annealed LaAlO₃ thin films on Si substrates. Each UHV annealing was performed for 3 min.

oxide (volatile SiO). Furthermore, this reduction reaction involves the decomposition of LaAlSiO_x. After annealing at 850 °C, Al 2*p* spectrum contains three components, such as AlO_x, LaAlO_x, and Al metal peaks. The existence of Al metal after UHV annealing at 850 °C is consistent with the results in HfO₂-Al₂O₃ system [4]. In this stage, desorption of Al-O component (may be Al₂O) as well as SiO gas may cause the decomposition of LaAlSiO_x. Flat surface is observed for the 800°C-annealed film from the atomic force microscopy measurements, while clusters with the hight of several nanometers are observed for 850 °C-annealed one. Combined with the angle-dependent photoemission spectroscopy of Al 2p core level spectra, Al-metal is most probable clusters.

References

- [1] G. D. Wilk et al., J. Appl. Phys. 89, 5243 (2001).
- [2] A. D. Li et al., Appl. Phys. Lett. 83, 3540 (2003).
- [3] X. B. Lu et al., Appl. Phys. Lett. 84, 2620 (2004).
- [4] H. S. Chang et al., Appl. Phys. Lett. 84, 28 (2004).

* oshima@sr.t.u-tokyo.ac.jp