10B, NW10A/2005G220

Site structure determination of rhodium-molybdenum catalysts supported in ordered mesoporous silica for selective butanol synthesis

Yasuo Izumi*, Kazushi Konishi, and Masayasu Tsukahara ¹Tokyo Institute of Technology, Nagatsuta 4259-G1-16, Midori-ku, Yokohama 226-8502

Introduction

Hydroformylation reaction has been developed for better chemo-selectivity to oxygenates and better regioselectivity to *n-li*-form. Recently, selective *n*-butanol synthesis was discovered in hydrofromylation of propene over Rh-Mo/FSM-16 catalysts [1]. The selectivity of butanol was exceptionally high (> 98 mol%) compared to Rh-Mo/silica gel catalysts before. Therefore, the site structure of Rh-Mo/FSM-16 was determined using EXAFS in this study.

Experimental section

 $[NH_4]^{+}_3[RhMo_6O_{18}(OH)_6]^{3-}$ was dissolved in minimal amount of deionized water and reacted with FSM-16 (Fuji Sylysia) for 12h. Then, the solovent was evaporated. Similarly, $[NH_4]^{+}_3[AlMo_6O_{18}(OH)_6]^{3-}$ was impregnated on FSM-16. $[Rh(COD)_2]^{+}[BF_4]^{-}$ in ethanol was reacted with $[AlMo_6O_{18}(OH)_6]^{3-}/FSM-16$ for 12h. Obtained powder was washed well until the filtrate became colorless.

XAFS spectra were measured at beamlines 10B and NW10A in transmission mode at 30 - 290 K. The data was analyzed using a package XDAP version 2.2.7.

Results and discussion

Based on the Rh and Mo K-edge EXAFS (Tables 1 and 2), metallic nanoparticles ≈ 20 Å in the mesopores were formed under hydroformylation conditions. Mo atomically mixed in/on Rh nanoparticles to segregate surface Rh ensemble to be selective CO insertion. Distorted heteropolyacid species coexisted in the catalysts under hydroformylation conditions. Detailed discussion can be found in Ref. 1.

References

[1] Y. Izumi, K. Konishi, M. Tsukahara, D. M. Obaid, K. Aika, *J. Phys. Chem. C* **111**, in press (2007).

* izumi.y.ac@m.titech.ac.jp

 Table 1. Best Fit Results to Rhodium K-edge EXAFS for Various Rhodium-Molybdenum Catalysts Supported in/on FSM-16 and Reference Rh Catalysts

	Rh–O		Rh–C		Rh(-C	–)C	Rh-Rh or Rh-Mo		Rh(-O-)Mo	
Rh wt%	N	R(Å)	N	R(Å)	N	R(Å)	N	R(Å)	N	R(Å)
(A) Before Hydr	oformyla	tion								
[RhMo ₆ O ₁₈ (OH) ₆]] ³⁻ /FSM-10	5								
0.22	6.6	1.88								
3.0	6.2	2.014							4.2	3.34
5.2	7.0	2.030							5.3	3.35
$[Rh(COD)_{,}]^{+}-[AIMo_{s}O_{,s}(OH)_{s}]^{3-}/FSM-16$										
1.6	1.8	2.05	8.0^{a}	2.092	8.0^{a}	2.962				
(B) After Hydroformylation (433 K, 5h)										
[RhMo _c O ₁ , (OH) _c	³⁻ /FSM-10	5								
0.22							8.4	2.679		
3.0	5.2	2.028					1.6	2.709	0.8	3.37
5.2	4.0	2.041					1.3	2.676	1.0	3.364
$[Rh(COD)_{2}]^{+}-[Al$	$Mo_{\ell}O_{10}(O)$	H),] ³⁻ /FSM	-16							
1.6	0 18 5	×04					8.2	2.688		
^a Equalized to	the values	s for [Rh(C	$COD)_{2}^{\dagger}[B]$	F₄]⁻.						

Table 2. Best Fit Results to Molybdenum K-edge EXAFS for Various Rhodium-Molybdenum Catalysts Supported in/on FSM-16 and Reference Rh Catalysts

	Mo-O		Mo-O		Mo-Rh		Mo(-O-)	Mo or Mo(–O–)Rh_			
Rh wt%	Ν	R(Å)	Ν	R(Å)	Ν	R(Å)	N	<i>R</i> (Å)			
(A) Before Hydroformylation											
$[RhMo_{c}O_{u}(OH)_{c}]^{3}/FSM-16$											
0.22	6.1	1.60	1.3	2.07			4.0	3.41			
3.0	0.6	1.67	1.1	2.00			2.5	3.356			
$[Rh(COD)_{-}]^{+}-[AlMo_{-}O_{-}(OH)_{-}]^{3}/FSM-16$											
1.6	1.6	1.664	1.9	1.99			2.2	3.324			
(B) After Hydroformylation (433 K, 5h)											
[RhMo,O.,(ŎH)] ³ /FSM-16											
0.22	1.0	1.664	5.3	1.98	0.9	2.74	1.4	3.185			
3.0	1.8	1.66	2.4	1.99	1.5	2.59					
5.2	0.7	1.67	4.7	1.94	1.4	2.56	0.8	3.35			
[Rh(COD),] ⁺ -[AlMo,O, _* (OH),] ³⁻ /FSM-16											
1.6	1.7	1.66	2.8	1.89	0.2	2.563	1.3	3.286			