Tin K-edge XAFS study of supported Ir-Sn/SiO₂ catalysts utilizing brilliant X-ray beam at 29 keV from PF-AR

Yasuo Izumi,^{1,*} Kazushi Konishi,¹ Laura Sordelli,^{2,#} Matteo Guidotti,² and Rinaldo Psaro^{2,#} ¹ Tokyo Institute of Technology, Nagatsuta 4259-G1-16, Midori-ku, Yokohama 226-8502, Japan ² CNR-ISTM, Dipartimento CIMA, Via Venezian 21, 20133 Milan, Italy

Introduction

Selective dehydrogenation of propane was found to proceed on $[Ir_4(CO)_{10}(SnCl_3)_2]^2$ (Scheme 1) supported on SiO₂ gel or MCM-41 [1]. In this report, the role of Sn site is discussed based on the Sn local structure given by Sn K-edge EXAFS.

Experimental section

 $[N(C_2H_5)_4]^+ [Ir_4(CO)_{10}(SnCl_3)]$ $_{2}$]²⁻ crystal (1) (Scheme 1) was impregnated on SiO₂ (290 m²g ¹) or MCM-41 (1024 m^2g^{-1}) ($[Ir_4Sn_2]/support$). IrCl₂ was SiO, impregnated on the followed by reaction with $Sn(n-C_4H_0)_4$ $(Ir_{18} + Sn_{10} / SiO_2,$ Ir/Sn atomic ratio 1.8). The Ir content was 1.0 wt% in all

catalysts. The incipient samples were heated in H_2 at 773 K. Sn K-edge XAFS spectra were measured at 30 – 290 K at beamline NW10A of PF-AR in transmission mode.

The standard parameters for curve fit were derived from EXAFS spectra for SnO powder and crystal **1** for Sn–O and Sn–Cl bonds, respectively, and theoretically generated from FEFF8.2 for Sn–Ir bond.

Results and discussion

The results of curve-fit analyses were summarized in Table 1. In the data measured at 30 K for crystal **1**, Sn–Ir peak was relatively enhanced compared to data at 290 K. Below, the data at 290 K were mainly compared between catalysts of different supports and preparation routes.

For $[Ir_4Sn_2]/MCM-41$ and $[Ir_4Sn_2]/SiO_2$ catalysts, oxidic Sn and metallic Sn–Ir alloy co-existed based on the presence of Sn–O and Sn–Ir bonds, respectively. The population of Sn–Ir alloy was greater on MCM-41 (N(Sn-Ir) = 4.6 - 4.7) versus on SiO₂ (N(Sn-Ir) = 1.7 - 2.0).

Oxidic Sn species dominant for $Ir_{1.8}+Sn_{1.0}/SiO_2$ (*N*(Sn–O) = 6.5 – 6.6) may play no role in propane dehydrogenation because the catalytic results of $Ir_{1.8}+Sn_{1.0}/SiO_2$ were similar to those of Ir/SiO_2 [1]. The curve fit results for $[Ir_4Sn_2]/SiO_2$ were intermediate values between $[Ir_4Sn_2]/MCM-41$ and $Ir_{1.8}+Sn_{1.0}/SiO_2$ samples (Table 1). Therefore, the catalyst consisted of comparable mixture of oxidic Sn and Ir–Sn alloy. The population of Ir–Sn alloy based on Sn K-edge EXAFS was correlated with the selective dehydrogenation activity.

As-supported $[Ir_4Sn_2]$ cluster on MCM-41 was also analyzed. Two thirds of ligand chlorines dissociated and the Sn atom bonded to either oxygen (N = 2.8) or iridium (N = 4.7). The cluster **1** seems to react inhomogeneously either with surface oxygen (or hydroxyl) of MCM-41 or to begin to form alloy (growth from smaller $[Ir_4Sn_2]$ core unit to 1.5 nm-particles).

<u>Reference</u>

[1] M. Guidotti, V. Dal Santo, A. Gallo, E. Gianotti, R. Psaro, L. Sordelli, *Catalysis Letters* **112(1-2)**, 89 – 95 (2006).

- * izumi.y.ac@m.titech.ac.jp (contact person in Japan)
- # lauras@istm.cnr.it, r.psaro@istm.cnr.it (responsible researchers)

Table 1. Best-fit results of Sn K-edge EXAFS for supported bimetallic Ir-Sn catalysts

Sample	T(observed)	Sn–O		SnCl		Sn–Ir		Goodness
Condition		N	R(Å)	Ν	$R(\text{\AA})$	Ν	$R(\text{\AA})$	of fit
[Ir _s Sn,]/MCM-41	t							
As supported	290 K	2.8	2.070	1.2	2.364	2.7	2.584	2464
						2.0	2.847	
Reduced 773 K	290 K	4.6	2.040			4.6	2.865	81370
[Ir ₄ Sn,]/SiO,								
Reduced 773 K	290 K	3.3	2.037			0.8	2.502	9567
						1.2	2.830	
	30 K	2.6	2.034			0.7	2.479	16561
						1.0	2.890	
Ir ₁₈ +Sn ₁₀ /SiO ₂								
Reduced 773 K	290 K	2.0	1.997			0.6	2.887	4567
		4.5	2.106					
	30 K	2.0	2.006			1.3	2.853	98986
		4.6	2.131					
Crystal 1				(3)	(2.426)	(0.5) (1)	(2.584) (2.718)	